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Following an historical introduction, the conventional canonical formulation of general relativity theory 
is presented. The canonical Lagrangian is expressed in terms of the extrinsic and intrinsic curvatures of the 
hypersurface xO=constant, and its relation to the asymptotic field energy in an infinite world is noted. The 
distinction between finite and infinite worlds is emphasized. In the quantum theory the primary and second
ary constraints become conditions on the state vector, and in the case of finite worlds these conditions alone 
govern the dynamics. A resolution of the factor-ordering problem is proposed, and the consistency of the 
constraints is demonstrated. A 6-dimensional hyperbolic Riemannian manifold is introduced which takes for 
its metric the coefficient of the momenta in the Hamiltonian constraint. The geodesic incompletability of 
this manifold, owing to the existence of a frontier of infinite curvature, is demonstrated. The possibility is 
explored of relating this manifold to an infinite-dimensional manifold of 3-geometries, and of relating the 
structure of the latter manifold in turn to the dynamical behavior of space-time. The problem is approached 
through the WKB approximation and Hamilton-Jacobi theory. Einstein's equations are revealed as geodesic 
equations in the manifold of 3-geometries, modified by the presence of a "force term." The classical phe
nomenon of gravitational collapse shows that the force term is not powerful enough to prevent the trajectory 
of space-time from running into the frontier. The as-yet unresolved problem of determining when the col
lapse phenomenon represents a real barrier to the quantum-state functional is briefly discussed, and a 
boundary condition at the barrier is proposed. The state functional of a finite world can depend only on the 
3-geometry of the hypersurface xO=constant. The label xO itself is irrelevant, and "time" must be deter
mined intrinsically. A natural definition for the inner product of two such state functionals is introduced 
which, however, encounters difficulties with negative probabilities owing to the barrier boundary condition. 
In order to resolve these difficulties, a simplified model, the quantized Friedmann universe, is studied in 
detail. In order to obtain nonstatic wave functions which resemble a universe evolving, it is necessary to 
introduce a clock. In order that the combined wave functions of universe-cum-clock be normalizable, it turns 
out that the periods of universe and clock must be commensurable. Wave packets exhibiting quasiclassical 
behavior are constructed, and attention is called to the phenomenological character of "time." The inner
product definition is rescued from its negative-probability difficulties by making use of the fact that prob
ability flows in a closed finite circuit in configuration space. The article ends with some speculations on the 
uniqueness of the state functional of the actual universe. It is suggested that a viewpoint due to Everett 
should be adopted in its interpretation. 

1. INTRODUCTION 

A L:MOST as soon as quantum field theory was 
invented by Heisenberg, Pauli, Fock, Dirac, and 

Jordan, attempts were made to apply it to fields other 
than the electromagnetic field which had given it
and indeed quantum mechanics itself-birth. In 1930 
Rosenfeld' applied it to the gravitational field which, at 
the time, was still regarded as the other great entity of 
Nature. Rosenfeld was the first to note some of the 
special technical difficulties involved in quantizing 
gravity and made some early attempts to develop 
general methods for handling them. As an application 
of his methods he computed the gravitational self-energy 
of a photon in lowest order of perturbation theory. 
He obtained a quadratically divergent result, confirming 
that the divergence malady of field theory, which had 
already been discovered in connection with the electron's 
electromagnetic self-energy, was widespread and deep 
seated. It is tempting, and perhaps no longer pre-
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1 L. Rosenfeld, Ann. Physik 5, 113 (1930); Z. Physik 65, 589 
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mature, to read into Rosenfeld's result a forecast that 
quantum gravidynamics was destined, from the very 
beginning, to be inextricably linked with the difficult 
issues lying at the theoretical foundations of particle 
physics, 

During physics's great boom of the thirties the difficult 
issues of field theory were inevitably often bypassed. 
Moreover, it was recognized early that as far as the 
gravitational field is concerned its quanta (assuming 
they exist) can produce no observable effects until 
energies of the order of 1028 eV are reached, this fantastic 
energy corresponding to the so-called "Planck length" 
(hG/c3) 1' 2= 10-33 em, where G is the gravitation con
stant. Hence, after Rosenfeld's initial studies years 
passed before anything essentially new was done in 
quantum gravidynamics, and even today interest in 
this area of research is confined to a very small group 
of workers. 

In 1950 the author2 reperformed Rosenfeld's self
energy calculation in a manifestly Lorentz-covariant 
and gauge-invariant mann.er. This work was stimulated 
by the then new "renormalization" methods, which 

• B. S. DeWitt, Ph.D. thesis, Harvard University, 1950 
(unpublished). 
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had been developed by Tomonaga, Schwinger, and 
Feynman, and had as its aim a demonstration that 
Rosenfeld's result implies merely a renormalization of 
charge rather than a nonvanishing photon mass. An 
unan tidpated source of potential difficulty arose in 
this calculation from the fact that not one but two gauge 
groups are simultaneously present (the group associated 
with gravity in addition to the familiar electromagnetic 
group) and that these groups are not combined in the 
form of a direct product but rather in the form of a 
semidirect product based on the automorphisms of the 
electromagnetic gauge group under general coordinate 
transformations. This means that if a fixed choice of 
gauge is to be maintained, every coordinate transfor
mation must be accompanied by an electromagnetic 
gauge transformation. The calculation was pushed, 
however, again only to the lowest order of perturbation 
theory; in this order, which involves only single closed 
Feynman loops, the ensuing complications are easily 
dealt with. 

At about the same time investigations of a more 
ambitious kind were undertaken by Bergmann. 3 

Although the renormalization philosophy had proved a 
resounding success in quantum electrodynamics it was 
still under critical attack because the methods then (and 
frequently even now) in use involved the explicit 
manipulation of divergent quantities. Similar (although 
more elementary) difficulties also persisted in classical 
particle theories with one important exception, namely, 
the theory of the interaction of point masses with 
gravity. In 1938, Einstein, Infeld, and Hoffmann4 had 
shown that the laws of motion of such particles follow 
from the gravitational field, equations alone, without 
divergent quantities ever appearing or such concepts 
as self-mass intervening at any time. Moreover, this 
result had been subsequently extended to include 
electrically charged particles, and gave promise of being 
applicable to spinning particles as well. The gravi
tational field thus appeared as a kind of classical regu
lator, and Bergmann reasoned that the same might be 
true in the quantum theory. Since the fields are basic, 
in the Einstein-Infeld-Hoffmann view, and the particles 
are merely singularities in the fields, Bergmann's first 
task was to quantize the gravitational field. It was to 
be hoped that commutation relations for particle po
sition and momentum would then follow as corollaries. 

The obstacles which Bergmann faced were enormous. 
First of all, since the laws of particle motion depend 
crucially on the nonlinear properties of the Einstein 
field equations, it was necessary to quantize the full 
nonlinear gravitational field. Secondly, it was necessary 
to find some way of defining particle position and 
momentum in terms of field variables alone. Thirdly, 
it would eventually be necessary to include spin, so that 

' A bibliography of Bergmann's early work will be fountl in 
P. G. Bergmann, Helv. Phys, Acta SuppL 4, 79 (1956). 

4 A. Einstein, L Infeld, and B. Hoffmann, Ann. Math. 39, 65 
(1938)' 

quantized particles obeying a Dirac-like equation could 
be described. Fourthly, it would be necessary to extract 
Fermi statistics (for the particles) out of the Bose 
statistics obeyed by the gravitational field. Finally, it 
would be necessary ultimately to remove the asymmetry 
between particle and field inherent in the Einstein
Infeld-Hoffmann approach, so as to be able, as in 
quantum electrodynamics, to account for pair produc
tion and vacuum polarization. It is not surprising 
that Bergmann's goal today remains as elusive as ever. 

To achieve this goal Bergmann set out upon the 
classical canonical road in search of a Hamiltonian. 
Despite the fact that canonical methods, by singling 
out the time for special treatment, run counter to the 
spirit of any relativistic theory-above all, such a 
completely covariant theory as general relativity-such 
a procedure seemed a good one for several reasons. 
Firstly, no other method was then known. Secondly, 
canonical methods afford quick insights into certain 
aspects of any theory. Thirdly, it seemed that standard 
perturbation methods would become available for 
certain types of calculations. 

However, Bergmann immediately ran into major 
difficulties (some of which had already been foreseen 
by Rosenfeld) in the first stages of his program. These 
are referred to as "the problem of constraints," and are 
manifested in the following ways: Some of the field 
variables possess no conjugate momenta; the momenta 
conjugate to the remaining field variables are not all 
dynamically independent; the field equations themselves 
are not linearly independent, and some of them involve 
no second time derivatives, thus complicating the 
Cauchy problem. These difficulties are all related and 
arise from the existence of the general coordinate
transformation group as an invariance group for the 
theory. . 

Similar difficulties had already been encountered 
with the electromagnetic field and methods for handling 
them were well known. The same methods, however, 
proved to be much more difficult to apply in the case 
the gravitational field. An obstacle is created, for 
example, by the fact that not all of the relations between 
the momenta (i.e., the constraints) are linear. More
over, because the invariance group of gravity is non
Abelian (in contrast to the gauge group of electro
dynamics) tedious calculations must be performed to 
check that the commutators of the various constraints 
lead to no inconsistencies. 

Bergmann and his co-workers performed much valu
able ground work in formulating the difficulties in a 
precise way and in partially resolving them. In the 
meantime additional help came from an unexpected 
quarter. In 1950 Dirac6 published the outline of a general 
Hamiltonian theory which is in principle applicable to 
any system describable by an action functional. Dirac's 
methods were quickly seized upon by Pirani and Schild6 

6 P. A.M. Dirac, Can.]. Math. 2, 129 (1950). 
6 F. A. E, Pirani and A. Schild, Phys. Rev. 79, 986 (1950), 
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for application to the gravitational field. Unfortunately, 
these authors cllose to develop the theory within the 
framework of a "parameter formalism," in the hope, 
which eventually proved to be misplaced, of retaining 
a manifest covariance which Dirac's methods would 
otherwise destroy. The complexity of the resulting 
algebra prevented them from computing all of the 
constraints. 

The theory remained in this incomplete state for 
several years. It was not until impetus was provided by 
the first international relativity conference in Bern in 
1955 (Jubilee of Relativity Theory) and the second one 
in Chapel Hill in 1957 that things began to move again. 
A small step forward was made by the author, 7 who 
showed, using the Pirani-Schild formalism, that the 
four so-called "primary" constraints could, by a phase 
transformation, be changed into pure momenta. This 
meant that the state functional for gravity must be 
independent of the g0,. components of the metric tensor 
(.u= 0, 1' 2, 3). Shortly afterward Higgs8 showed that 
three of the so-called "secondary" or "dynamical" 
constraints are the generators of infinitesimal trans
formations of the three "spatial" coordinates xi, x2, x3

• 

The implication of this was that the state functional 
must be independent of the coordinates chosen in the 
spacelike cross sections x0= constant and hence cannot 
be taken to. be an arbitrary functional of the metric 
components g;i (i, j= 1, 2, 3). Developments thereafter 
came rapidly. Dirac himself had by this time begun to 
apply his methods to the gravitational field. 9 As a result 
of simplifications and clarifications which he introduced, 
it became easy to show that the fourth dynamical con
straint is consistent with the others, and the formal 
theory achieved for the first time a state of technical 
completion. It was then possible to begin asking "What 
does it all mean?'' 

On the classical side, the problems of physical inter
pretation were soon resolved by the work of Arnowitt, 
Deser, and Misner, 10 who showed how to use the canoni
cal theory to provide a rigorous characterization of 
gravitational radiation and "energy." In the quantum 
domain, however, the interpretation of the formalism 
remained puzzling and obscure for several years, because 
one did not know the right questions to ask. It is only 
recently that the relevant issues have begun to come into 
focus, largely as a result of the patient researches of 
Wheeler, 11 whose ideas have proved a great source of 
stimulation to many workers, including the author. 

7 Reported at a meeting a.t Stevens Institute of Technology in 
January, 1958 (unpublished). 

8 P. W. Higgs, Phys. Rev. Letters 1, 373 (1958); 3, 66 (1959). 
• P. A. M. Dirac, Proc. Roy. Soc. (London) A246, 326 (1958); 

A246, 333 (1958); Phys. Rev. 114, 924 (1959). 
10 R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An 

lntrodw;tion to Current Research, edited by L. Witten (John 
Wiley & Sons, Inc., 1\'ew York, 1962). 

11 The work of Wheeler and his associates is well described in 
J. A. Wheeler, Relativity Groups and Topology, 1963 Les Homhes 
Lectures (Gordon and Breach Science Publishers, Inc., New York, 
1964). This reference contains a large bibliography of additional 
papers on quantization, collapse, and many other related topics. 

The present paper is the direct outcome of conver
sations with Wheeler,l2 during which one fundamental 
question in particular kept recurring: What is the struc
ture of the domain manifold for the quantum-mechanical 
state functional? The attempt to answer this question 
has required a more far-reaching analysis of the tech
nical structure of the canonical theory than can be 
found in the previous literature. The results of thi3 
analysis are here presented and used to develop an inter
pretative framework which, although tentative, is 
perhaps capable of serving in a variety of contexts. 

Attention is mainly confined to the case of closed 
finite worlds, firstly because the issues which finite 
worlds raise are more critical and bizarre, and secondly 
because the case of infinite worlds is better handled 
within the framework of the so-called manifetlsy co
variant theory which will be treated in two subsequent 
papers of this series. The latter theory, which has also 
achieved a state of technical completion following the 
pioneering work of Feynman,13 differs utterly in its 
structure from the canonical theory, and so far no one 
has established a rigorous mathematical link between 
the two. At the present time the two theories play 
complementary roles, the canonical theory describing 
the quantum behavior of 3-space regarded as a time
varying geometrical object, and the covariant theory 
describing the behavior of real and virtual gravitons 
propagating in this object. 

Section 2 of the present paper begins with the deri
vatiop of the canonical Lagrangian. Its structure in 
terms of the extrinsic and intrinsic curvatures of the 
hypersurface x0 = constant is displayed, and attention 
is called to its relation to the total field energy in an 
asymptotically flat world. Section 3 is devoted to the 
primary and secondary constraints of the theory and to 
the independent question of coordinate conditions. 
Quantization is introduced in Sec. 4. Here the puzzling 
question of the role of a vanishing Hamiltonian is re
solved by emphasizing the distinction between fmite 
and infinite worlds. Asymptotic energy is an indispen
sable concept in an infinite world, and the Hamiltonian 
must be chosen accordingly. In a finite world there is 
no asymptotic energy, and an intrinsic description of 
the dynamics must be found, based on the constraints 
alone. The consistency of the constraints is demon
strated by straightforward computation of their com
mutators. The factor-ordering problem is disposed of by 
formal arguments which in effect assert that field vari
ables taken at the same space-time point should be 
regarded as freely commutable. The "x constraints" are 
shown to be the generators of 3-dimensional coordinate 
transformations. 

In Sec. 5 the metric representation is introduced. The 

12 Any errors or wrong conjectures it contains are :he author',; 
own. 

"R. P. Feynman, Mimeographed letter to V. F. Weisskopf 
dated January 4 to February 11, 1961 (unpublished); Acta Phys. 
Polan. 24, 697 (1963). 
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distinction between finite and infinite worlds is again 
noted, and it is emphasized that the state functional in 
the former case depends only on the 3-geometry of the 
hypersurfa'ce x0 = constant and not on the label x0 itself. 
The conc~pt of a manifold ~ of 3-geometries is intro
duced, and the role played by the Hamiltonian con
straint in· determining its geometrical structure is 
suggested. The coefficient of the momenta in the Hamil
tonian constraint may be regarded as a metric of a 
6-dimensional hyperbolic Riemannian manifold M. The 
structure of this manifold is studied in detail, and its 
geodesic incompletability, owing to the existence of a 
frontier of infinite curvature, is noted. The possibility 
of relating M to the question of "intrinsic time" for the 
state functional is discussed, and a natural definition for 
the inner product of two state functionals is proposed. 

In Sec. 6 a natural metric based on M is assigned to 
the infinite-dimensional manifold ~, and some of the 
properties of geodesics in ~ are examined. An attempt 
is then made to indicate the extent to which the dy
namical properties of the quantized gravitational field 
are determined by the structure of ~. The attempt is 
heuristic and far from complete, and much work remains 
to be done. The problem is approached through the 
WKB approximation and Hamilton-Jacobi theory. 
Einstein's equations are revealed as geodesic equations 
in ;JIT, modified by the presence of_a "force term." The 
classical phenomenon of gravitational collapse shows 
that the force term is not powerful enough to prevent 
the trajectory of 3-space from striking the frontier of 
~. The problem of determining when the collapse 
phenomenon represents a real barrier to the quantum 
state functional is briefly discussed, and a boundary 
condition (vanishing state functional) at the barrier 
is proposed. 

The barrier boundary condition raises difficulties 
with the definition of probability. In order to study 
these difficulties it is useful to test the theory on a 
simplified model. In Sec. 7 the quantized Friedmann 
universe is studied in detail, and its static wave func
tions in the WKB approximation arc obtained. In order 
to obtain nonstatic wave functions which resemble a 
dynamical universe evolving it is necessary to introduce 
a clock. The combined wave functions of universe-cum
clock are studied, and it is pointed out that normaliz
ability of the wave functions requires precise commen
surability between the periods of universe and clock. 

Wave packets exhibiting quasiclassical behavior are 
constructed in Sec. 8, in three different representations. 
Two of these make use of proper times defined by the 
clock and the universe respectively; the third treats 
universe and clock symmetrically through their mutual 
correlations. Attention is called to the deficiencies of 
the first two representations arising from the fact that, 
in a covariant theory, time is only a phenomenological 
concept. In the third representation probability flows 
in a closed finite circuit in configuration space, and wave 
packets do not ultimately spread in time. Use is made of 

this fact in Src. 9 to show how the inner-product 
definition can be rescued from the negative probability 
difficulties arising from the barrier boundary condition 
'1'=0 at R=O (R=radius of universe). It is also shown 
that the conventional Cauchy data for the wave func
tion suffice to determine the quantum state completely. 

Section 10 is devoted to speculations on the general 
theory. An interpretation of quantum mechanics due 
to Everett (see Ref. 52) is described and proposed for 
dealing with the concept of "a wave function for the 
universe." Such an interpretation is essential if the wave 
function is UIJ.ique. Evidence is presented that the 
Hamiltonian constraint may indeed have only one so
lution. The problem of time-reversal invariance and 
entropy is briefly discussed. Two technical appendices 
follow at the end of the article. 

Attention is called to the following points of notation: 
Latin indices range over the values 1, 2, 3 and Greek 
indices over the values 0, 1, 2, 3. Differentiation is 
denoted by a comma. The coordinates x0 and xi are 
assumed to be timclike and spacelike, respectively,and 
the geometry of space-time is assumed to be such that 
the'hypersurfaces x0= constant are capable of carrying a 
complete set of Cauchy data. So-called "absolute units" 
in which h= c= 161rG= 1 (G being the gravitation con
stant) are used throughout, as is also the signature 
-+++ for the space-time metric g~'"' The Riemann 
and Ricci tensors, and the curvature scalar, are taken 
in the respective forms 

RI'""T= r."T·I'- r ""T··+ r vupr I'P T- r l'"p r.p T, (1.1) 

RI'.=Rul'v'', (1.2) 

(1.3) 

where 

r l'•"=h"'(gi'T,v+ g"'·l'-- gl' •.• ), gl'ug"'= O/' (1.4) 

The corresponding tensors in the spacelike cross sections 
x0= constant are distinguished by means of a prefixed 
superscript (3). These conventions have the property 
that <•> R is non-negative in a space-time containing 
normal matter and satisfying Einstein's equations, and 
that <a> R is positive in a 3-space of positive curvature. 

2. EXTRINSIC AND INTRINSIC CURVATURE. 
CLASSIC FORM OF THE LAGRANGIAN 

The canonical theory begins with the _following de
composition of_ the metric tensor: 

/3i) 
'Yii , 

( 2.1) 

(2.2) 
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When the conventional Einstein Lagrangian density 
is reexpressed in terms of the new variables, it is found, 
after some calculation, to take the form 

J:=gl/2 (4lR= a:ytlz(K;;KiJ_ K2+ (3l R) 

- 2('YI/2K) .o+ 2('Yti2Kf3L'Yt/2'Yiia) ,i (2.3) 

where 

Kii=.'Yik'Yf'K kl, 

K='YiJK;;, 

(2.4) 

(2.5) 

the dots denoting covariant differentiation based on 
the 3-metric "'ii· 

The quantity K;;, which transforms as a symmetric 
tensor under spatial coordinate transformations, is 
known as the second fund~mental form. It describes the 
curvature of the hypersurface x0= constant as viewed 
from the 4-dimensional space-time in which it is em
bedded. It is therefore also frequently called ' the 
extrinsic curvature tensor of the hypersurface, as opposed 
to the intrinsic curvature tensor <aJ R;;, which depends 
only on 'Yii in the hypersurface. In a fiat space-tiine 
<3l R;; is completely determined by K ih but in a manifold 
of arbitrary curvature there need be no relationship 
between the two. The contracted forms <3lR and K;;Kii 
- K 2 will be referred to as the intrinsic and extrinsic 
curvatures, respectively. 

The last two terms of Eq. (2.3), being total deriv
atives, are dynamically irrelevant and may be dropped. 
The Lagrangian then becomes 

which has the classic form "kinetic energy minus po
tential energy," with the extrinsic curvature playing the 
role of kinetic energy and the negative of the intrinsic 
curvature that of potential energy. 

The form (2.6) is manifestly invariant under 3-
dimensional generai coordinate transformations. Pre
cisely for this reason it differs from the Lagrangian of 
ordinary field theories, for the <3l R term of its integrand 
contains linearly occurring second spatial derivatives 
of the field variables. With an ordinary field theory in 
an infinite universe this would be of no significance. The 
usual assumption that the field vanishes outside some 
arbitrarily large but finite spatial domain permits 
linearly occurring second derivatives to be eliminated by 
partial integration without affecting either the dynami
cal equations or the canonical definition of energy. In 
the case of gravity, however, the field never vanishes 
outside a finite domain unless space-time is fiat, and 
although such a partial integration leaves the dynamical 
equations unaffected it does change the definition of 
energy. It is easy to verify, in fact, that it subtracts 

from the Lagrangian (2.6) a surface integral E~ given by 

and hence adds a corresponding quantity to the canoni
cal energy. In an asymptotically fiat world it is always 
possible to find an asymptotically Minkowskian refer
ence frame in· which a, (3;, and 'Yi; take the static 
Schwarzschild forms 

M 
a~ 1---, (3; ~ 0, (2.8) 

r-"' 1611'r r-"' 

where r2=.xixi and M is the effective gravitational mass 
of the field distribution. Substitution of (2.8) into (2.7) 
yields 

E.,=M. (2.9) 

It is to be noted that the removal of E,., from the 
Lagrangian does not correspond to a mere redefmition 
of the energy zero point. E., is not a fixed constant but 
depends on the state of the field. In fact it is the energy, 
for as we shall see presently tt:! canonical "energy" 
based on (2.6) always vanishes. (Indeed, Ec" is the 
energy even when other fields are present.) Since 
neither (2.6) nor (2.7) have any explicit dependence on 
xo, the quantity E"' is conserved. General relativity is 
unique among field theories in that its energy may 
always be expressed as a surface integral. This was the 
source of Bergmann's hope to use gravity as a regulator, 
but it is also a source of difficultie.s. We note in particular 
that the surface integral vanishes for a closed finite 
world. It is only for infinite asymptotically fiat worlds 
that the energy concept has meaning. 

3. THE CONSTRAINTS 

The momenta conjugate to a,f3i, and "'ii will be denoted 
by 71', 71';, and 71';;, respectively. They have the explicit 
forms 

oL 
71'=-=0, (3.1) 

oa,o 

oL 
7ri=-=0, (3.2) 

of3i,o 

oL 
11'ii=--= _'Ytlz(K;;_'YiJK), (3.3) 

0/'ij ,0 

Eqs. (3.1) and (3.2) being known as the primary con
straints. The primary constraints are purely formal 
statements, which express the fact that the Lagrangian 
(2.6) is independent of the "velocities" a,o and {:J;,o.14 

14 Failure to bring the Lagrangian into the form (2.6) was 
responsible for the difficulties originally encountered with the 
primary constraints. 
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These "velocities" arc arbitrary and cannot be re
expressed in terms of momenta. They therefore cann0t 
be removed from the Hamiltonian, which, with the aid 
of (3.3), takes the form 

where 

X= h-112( 'Yik'Yil+'Yil'Yik-'Yii'Ykz}n·•J1rk1-'Y112 Cal R (3.5a) 

""'Yli2(K,,K•i-K2- C3lR), (3.5b) 

x•=- 21T"'i-i=i- 27rij.i_ 'Yi1(2'Yiz.k-'Yik.z)7rik. (3.6) 

The momenta, as well as JC and Xi, are all 3-densities 
of unit weigh\. 

It is not hard to show that Einstein's empty-space 
fteld equations may be obtained by taking the Poisson 
bracket of the various dynamical variables with the 
Hamiltonian (3.4) and then imposing Eqs. (3.1) and 
(3.2) as ex~ernal constraints. Since the undermined 
"velocities" a,o and {3;, 0 are multiplied in (3.4). by 71" and 
71"•, their Poisson brackets with anything may be ignored. 
If desired, one can always assign definite values to a and 
/3; which may be purely numerical or may depend on 
the 'Yii and 7rii. Each choice corresponds to the impo
sition of certain conditions on the space-time coordi
nates. For example, one may choose 

a=1, /3;=0, 

which reduces the Hamiltonian to 

Another favorite choice is 

(3.7a) 

(3.7b) 

(3.8a) 

which corresponds to the requirement that the volume 
of every hypersurface x0= constant be stationary under 
small timelike deformations, 15 and that the spatial 
coordinates in each hypersurface be harmonic. To obtain 
the explicit forms of the conditions wb.ich Eqs. (3.8a) 
impose upon a and /3;, one notes that these equations 
imply the vanishing not only of their left-hand sides but 
of all their space-time derivatives as well. Taking the 
Poisson brackets of K and ('Y 1' 2'Yii).i with the Hamil
tonian (3.4) one finds the conditions 

a_/- <3lRa=O, 
[ 'Yl/2((3i_i+f3i. i_'Yiif3k.k)+2a7rii].j= 0. 

(3.8b) 

In an infinite asymptotically flat world these equations, 
which are of the elliptic type, may be solved subject to 

15 If 3-space is infinite this applies to the volume inside every 
finite domain. 

the boundary conditions a--+ 1, {3;--+ 0 at infinity in 
asymptotically Minkowskian coordinates. In a finite 
world of nonvanishing curvature, however, they usually 
possess either no physically admissible solutions, i.e., 
solutions for which a remains everywhere positive, or no 
solutions at all. Since the Laplace-Beltrami operator has 
a negative spectrum, the first equation, for example, 
cannot be solved in a 3-sphere. 

Conditions of the above type correspond merely to 
restrictions on the coordinates and have no physical 
content. There exist conditions of yet another type 
which actually restrict the dynamical freedom of the 
field and which hold regardless of whether a specific 
choice has been made for a and {3; or not. These are 
obtained by noting that since the primary constraints 
hold for all time, the x0 dtrivatives of 71" and 71"; must 
vanish. Stating this in the form of a Poisson bracket 
with H, one arrives immediately at the so-called 
secondary or dynamical constraints: 

(3.9) 

(3.10) 

Equation (3.9) will be called the Hamiltonian con
straint16 in virtue of the structure of the function JC, 
which appears in (3.5b) as the difference of the extrinsic 
and intrinsic curvatures, in analogy with the classic 
form of the Hamiltonian as the sum of the kinetic and 
potential energies. This Hamiltonian, however, vanishes, 
as does indeed the total Hamiltonian (3.4). That is to 
say, in any "Ricci-flat" space-time (i.e., one satisfying 
Einstein's empty-space equations) the extrinsic and 
intrinsic curvatures of any hypersurface are equal. As 
has been emphasized by Wneeler, 11 the converse of this 
theorem is also true, namely, if JC vanishes over every 
hypersurface then space-time is Ricci-flat. This suggests, 
as will be verified later, that it is the Hamiltonian con
straint which provides the essential description of the 
"intrinsic" (i.e., coordinate-independent) dynamics of 
the gravitational field. 

4. QUANTIZATION, CONSISTENCY OF THE 
CONSTRAINTS, FAC:J'OR ORDERING 

In th~ quantum theory, Poisson brackets become 
commutators. This means that the constraint Eqs. 
(3.1), (3.2), (3.9), and (3.10) cannot become operator 
equations, for otherwise the Hamiltonian (3.4) would 
yield no dynamics at all, extrinsic or intrinsic. Instead 
they become conditions on the state vector '1'5•9 : 

71"'1'=0, (4.1) . 
71"''1'= 0' (4.2) 

JC'lt=O' (4.3) 

X''lt=O. ( 4.4) 
16 All four constraints (3.9), (3.10) are sometimes referred to as 

"Hamiltonian constraints." We prefer to reserve the terminology 
for this particularly important constraint. 
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These quantum constraints are oft~n a source of 
puzzlement and confusion. Consider the equation 

·n;(x0,x) = e•H~-y;;(O,x)e-•JlO, x= (x\x2,x3) ( 4.5) 

which is the quantum-mechanical relation expressing 
the field operator -y;; on an arbitrary hypersurface in 
terms of the corresponding operator on the hypersurface 
x0 =0. Suppose we choose a and /3; as in Eq. (3.7a). 
Then Eq. (4.3) and its conjugate imply17 

H'I!=O, 'I!tH=O, (4.6) 
and hence 

(4.7) 

A similar result holds for any other field operator or 
product of field operators. Since the statistical results 
of any set of observations are ultimately expressible in 
terms of expectation values, one therefore comes to the 
conclusion that nothing ever happens in quantum 
gravidynamics, that the quantum theory can never 
yield anything but a static picture of the world. 18 

To see what is wrong with this conclusion one must 
examine the behavior of H, or more precisely JC, at 
infinity. In an infinite asymptotically flat world the 
field disperses ultimately to a state of infinite weakness. 
In the asymptotic region JC therefore tends to its domi
nant linear term -y;;,jj-/'i;,;;=O ,which is the well
known fourth constraint of linearized gravity theory.10 

This term is the asymptotic limit of the term which is 
removed from the integrand of H by the partial inte
gration discussed in Sec. 2, and which gives rise to the 
surface integral (2. 7). In the linearized theory, however, 
it becomes a constraint which has no relation to the 
total energy. Therefore if the full theory is to be appli
cable not only in the nonlinear region but also at infinity 
where the linear theory holds sway, it must make use 
of the Hamiltonian 

(4.8) 

which results from the partial integration. The integrand 
of this Hamiltonian reduces, in the asymptotic region, 
to an expression quadratic in the -y's and 1r's, namely, 
the usual integrand of the linearized theory. 

It follows that in an infinite asymptotically flat 
world Eq. ( 4.5) should be replaced by 

/'ii(xO,x) = eiH ~xo-y ;;(O,x)e-iH ~xo. ( 4.9) 

Even with this replacement, however, the appearance 
of the world is still static whenever it is an eigenstate 
of energy-momentum. To obtain nonstatic behavior 
one must construct wave packets, by superposing many 
different momenta. But this is precisely what one wants 
to do in order to provideS-matrix theory, for example, 
with a rigorous foundation and insure that the field 
really does disperse ultimately to a state of infinite 
weakness. · 

17 X is assumed to be ordered in an Hermitian fashion. 
1s Cf. A. Komar, Phys. Rev. 153, 1385 (1967). 

Although the above discussion makes use of the co
ordinate system defined by Eqs. (3.ia), the same prob
lems arise in any other asymptotically lVIinkowskian 
coordinate system, and the same conclusions apply. To 
the extent that we can ignore the possible lack of com
mutativity of a and {3; with JC and Xi in the constructi~n 
of an Hermitian Hamiltonian, the same apparent stat1c 
behavior of the field will occur whenever we incorrectly 
use H instead of Hoo in Eq. (4.9). 

It should be noted that coordinate conditions such 
as (3.7a) and (3.8a) are operator equations and not con
straints on the rtate vector. 19 (This follows from the 
complete arbitrariness of a and {3; in the classical 
theory.) On the other hand, equation~ such as (~.8a), 
which hold only when a and {3; are smtably restncted, 
are not operator equations. Indeed, they are not even 
constraints, but become instead expectation-value 
equations 

(3.8c) 

which hold for all values of x0 provided they hold at 
some initial instant and Eqs. (3.8b) are satisfied. They 
do not hold in all permissible states merely in virtue of 
(3.8b). 

Although we know that the physical con~ent of the 
classical theory is unaffected by the chmce of co
ordinates it is not so easy to prove, using the canonical 
theory, that the results of a calculation of som~ physical 
quantum amplitude i.;; independent of the chmce of co
ordinates. It is not enough merely to know, for example, 
that two different coordinate systems both take the 
Minkowskian form a~ 1, {3; ~ 0, /'ii ~ Oii at infinity, 
in order to conclude that the physical S matrix remains 
unchanged under the transformation from one system 
to the other, for the operator t:.H, which represents the 
change in the Hamiltonian in passing from one system 
to the other, produces effects which propagate to 
infinity. In order to prove invariance of the S matrix 
under coordinate transformations (including q-number 
coordinate transformations), one would have to show 
that t:.H affects only the nonphysical field modes at 
infinity. The obstacle to such a demonstrati_on !s the 
lack of commutativity of the operators appeanng m the 
dynamical equations, particularly when a and {3; de
pend nonlocally on l'ii and 1rii. Al.though ~onco~
mutativity has no effect on the scattenng amplitudes m 
lowest order, it plays havoc with the radiative correc
tions. For the study of radiative corrections a manifestly 
covariant theory is almost essential. In the following 
paper of this series the theory of gravitational radiative 

19 There is an alternative approach to the quantum theory of 
gravity which makes use of an action functi_onal which is not 
coordinate-invariant and which generates no pnmary or secondary 
constraints. In this approach the constraints n:ust be imp<;>sed 
from the outside. They take the form of coordmate c<;>ndittons 
whose form is not arbitrary but is determined by the actton f~nc
tional itself. In this case the coordinate conditions are constramts 
on the state vector. This is the approach which has been followed, 
for example, by GuEta [S. N. Gupta, in Recent De; .. elopments 
in General Relativity (Pergamon Press, Inc., New York, 1962)]. 
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corrections will be displayed in all its complexity, and 
the 5 matrix in the mainfestly covariant theory will be 
proved to be fully coordinate invariant. This result has 
not yet been proved in the canonical theory, and for this 
reason we shall include little further discussion of the 
case of infinite asymptotically fiat worlds in this paper, 
but will concentrate henceforth on finite worlds. 

In the finite case there is no distinction between Hand 
H "'' and hence we must face up anew to the difficulties 
posed by Eq. (4.7). The following procedure will be 
adopted: Instead of regarding this equation as implying 
that the universe is static we shall interpret it as inform
ing us that the coordinate labels x~' are really irrelevant. 
Physical significance can be ascribed only to the intrinsic 
dynamics of the world, and for the description of this 
we need some kind of intrinsic coordinatization based 
either on the geometry or the contents of the universe. 
In the case of infinite asymptotically flat worlds the 
Minkowski coordinates at infinity have independent 
physical relevance as preferred coordinates (up to a 
Lorentz transformation) based on an a priori assumed 
isometry group (the Poincare group) for the asyrr.ptotic 
region. One may say that they are intrinsically de
termined by an implicit laboratory or observer at 
infinity, and that the constraints serve merely to elimi
nate the nonphysical modes from the field. In the case 
of finite worlds, however, the constraints are every
thing; they and they alone must yield the complete 
quantum-mechanical description of the world geometry. 
One of our tasks in the remainder of this paper will be 
to try to convince the reader that the equations of con
straint really do satumte the theory, that nothing else 
is needed. 

We must first establish the fact that the constraints 
are consistent with each other, and this raises some 
issues of factor ordering. 20 'C' nfortunately, general 
agreement has not yet been reached on how to resolve 
these issues, and hence the proposals which follow must 
be reg:1.rded as tentative. We emphasize, however, our 
view that the factor-ordering question is not very im
portant to the theory as a whole, and should in no case 
be permitted to impede attempts to apply the theory to 
concrete problems. It arises in every local-field theory 
possessing nontrivial spectral functions, and bears 
mainly on problems of interpreting divergences. The 
latter are always resolved by symmetry arguments or 
by removing infinities from divergent integrals in an 
invariant way. How such procedures operate in the 
case of gravity will appear in the papers devoted to the 
manifestly covariant theory, where questions of factor 
ordering will again be discussed. 

Consistency of the constraints is established if it 
can be shown that commutators of the constraints lead 
to no new constraints. The basic commutation relations 

20 See, for example, J. L. Anderson, in Proceedings of tlze 1962 
Eastern Theoretical Conference, edited by M. E. Rose (Gordon and 
Breach Science Publishers, Inc., ~ew York, 1963), p. 387. See 
also J. Schwinger, Phys. Rev. 130, 1253 (1963); 132, 1317 (1963). 

of the canonical variables themselves are 

[a, '~~"']=io(x,x'), [~;, 'll"i']=io,J', 

[y;;, 'll"k' z'J = io;/' z'; 

all other commutators vanish; 

(4.10) 

in which a notation is employed which emphasizes the 
bitensor transformation character of the quantities on 
the right, with primes being used, either on indices or 
on the variables themselv ::::: .. to distinguish different 
points of 3-space. Here o(x,x') denotes the 3-dimensional . 
o function, and 

"i'-"i"( ') "k'l'-"kl"( ') u; =u; u X,X , u;; =u;; u x,x , 

o;/1=Holoi+o;1o/). 
(4.11) 

(The o function will ordinarily be viewed as a bidensity 
of zero weight at its first argument and of unit weight 
at its second.) 

The primary constraints evidently give no trouble, 
since they commute with each other and with the 
secondary constraints. We therefore turn to the latter 
and look first at the X constraints. These will be taken 
precisely as written in Eq. (3.6), with the momentum 
factor 'll"ik standing to the right. However, the index 
will be lowered by defining 

(4.12) 

which, since')";; stands to the left, yields an alternative 
form for Eq. (4.4): 

X;'l'=O. (4.13) 

X; has the important property of being homogeneous 
bilinear in the 'Yii and the 'll"ii, with the 'Y's to the left 
and the 'll"'s to the right. Therefore its commutator with 
any other Xi' has the same property. To compute this 
commutator it is helpful first to compute the following: 

[ 'll"ii, i J xk'o~k'dax'] 
= _ (11"iio~k) ,k+'ll"kio~i.k+'ll"ikoe.k, (4.15) 

which reveal the X's as generators of 3-dimensional co
ordinate transformations. Under the infinitesimal co
ordinate transformation xi= xi+o~i, the change in any 
function of the 'Yih 1rii and their derivatives is given by 
commutation with ifX;oed3x, provided the function 
has no explicit dependence on x. From this it follows at 
once that 

(4.16) 
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where the c's are the structure constants of the general 
coordinate transformation group: 

( 4.17) 

The same observations, combined with the fact that 
JC is a scalar density, yield the formula 

[X;,X']=iX8,;(x,x'). (4.18) 

Again the ordering of factors remains the same on both 
sides of the equation. The only term of X which might 
lead to difficulty is the one quadratic in the momenta. 
But all of the factors which appear in this term have 
homogeneous linear transformation laws under the 3-
dimensional coordinate transformation group and hence 
remain undisturbed in position when commuted with 
X;. Thus, the commutators (4.16) and (4.18) yield no 
new constraints, and the choice of factor ordering for 
X is so far arbitrary. 

1'\ ow note that all of the above results could have been 
obtained equally well had the opposite ordering been 
chosen for X;, with the 7r's standing to the left and the 
-y's to the right. The difference between the two choices 
for X; therefore commutes with everything and is 
evidently a c number. It is a c number, moreover, with 
definite transformation properties; namely, it is a 
covariant 3-vector density. From this we may conclude 
that it can only be zero, for otherwise 3-space would 
contain a preferred direction quite independently of any 
geometry which may be imposed on it. The reasonable
ness of this conclusion also follows from a straight
forward formal computation of the difference between 
the two X's, which yields derivatives of 8 functions with 
coincident arguments. Any ordering may therefore be 
chosen for X;, and if 'Yii and 71";; are Hermitian so is X,. 

The same conclusions do not automatically hold for 
x•, since the difference between two orderings for it 
involves an undifferentiated 8 function. Let us there
fore see what we can say about the formal symbol 
8(x,x). Consider the third commutator in (4.10). If we 
set x' = x and contract all the indices, we obtain 

(4.19) 

The quantity on the right is certainly a c number. There
fore we may write 

[6i8(x,x), if X~o·8~k'd3x']=O. (4.20) 

On the other hand, if we apply the same commutator 
to the left we obtain 

[ ('Y ii11"1i-71"ii'Y ii), i J X~o· 8~k' d3x'] 

=- [('Yii11"•i-71"ii'Y;i)5~kJ. ~o=- 6i[8(x,x)8~kJ.~o. (4.21) 

Equating the two results we find 

(4.22) 

This equation must hold for arbitrary o~i. Therefore, 
although most people would say that o(x,x) is infmite, 
we see that it is actually zero. 

In order to understand how this formal result can be 
consistent with the rest of the theory one must first 
note that Eqs. ( 4.3) and ( 4.13) are really abbreviations 
for the correct forms 

J X~d3x '{! = 0 for all ~ , (4.23) 

(4.24) 

where~ and ~;are arbitrary but smooth e-n umber weight 
functions. The problem of taking commutators of field 
quantities at the same space-time point t~erefore ne;er 
arises with pairs of constraints but only m connectwn 
with the definition of the functions JC and X; themselves. 
This means that the 8 function may, without incon
sistency, be thought of as the limit of a. sequence of 
successively narrower twin-peaked funclwns, all of 
which are smooth, have unit integral, and vanish at the 
point x' = x in the valley between the peaks. An example 
of such a function in one dimension would be o(x) 
=lim(27r)-1 [j,(x-vE) + j, (x+vE)-2f,(x) /(l+E)], 
wherej,(x)= E(x2+E2)-1• In an infinite world, passage to 
the limit E -t 0 would correspond to the usual cutoff 
going to infinity in momentum space, whi:e maintenan~e 
of the valley at x' = x would yield a part1cular regulan
zation of the resulting divergences. The answer to the 
question whether or not this regularization is equivalent 
to the quite different procedures which will prove useful 
in the manifestly covariant theory must await a demon
stration of how to derive one theory from the other. In 
the meantime we shall in this paper simply adopt it as 
a rule that any two field operators taken at the same 
space-time point commute. The consistency quest.ion 
for the constratints then reduces to that of the classical 
theory. 

There remains to be considered only the commutator 
[X,X']. At first sight it might be thought that the com
mutator of the two quadratic-in-the-momenta terms, 
one from JC and the other from JC', leads to difficulties. 
However these terms contain no derivatives (of the 
-y's or 71"';) with respect to the 3-space coordinates and 
hence they commute. Since the terms -y1

' 2 <a>R and -y' 112 

(3lR' contain no momenta, they likewise commute. 
The only commutators which remain are the cross 
commutators, and these can be evaluated by judicious 
use of the variational formula 

8( -yl/2 (3l R) = -y112-yii-yk'(h ik.il- 8-y if.kl) 
--yli2((3)Rii_h;; <a>R)8-y;;. (4.25) 

The final result is 

[X,X']= 2iXi8.;(x,x')+iX1,;8(x,x'), (4.26a) 
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or, more correctly, 

If we were still concerned about the order of factors we 
would find that a symmetric (Hermitian) ordering for X 
would yield a symmetric ordering for xi in (4.26), 
namely Xi= H 'Yii,X;}, and the problem at issue would 
then be to evaluate the commutator [ 'Yii,X;]. From our 
present point of view this commutator vanishes, and 
consistency is maintained. 21 

5. THE FUNCTIONAL WAVE EQUATION AND 
THE STATE-FUNCTIONAL DOMAIN 

MANIFOLD 

Further analysis of the canonical theory requires the 
introduction of a specific representation for the quantum 
states. Wheeler11 has chosen for this purpose what may 
be called the metric representation, in which 'lt becomes a 
functional of the metric components g,.., and the mo
menta become functional differential operators: 

7r=-, 'Jri=-, 'Jrij=--. (5.1) 
ioa io{3; io'Y;; 

The primary constraints tell us that Wheeler's 'lt 
depends only on the 'Y's. We shall indicate this, for the 
present, by writing 'lt in the form 'lt[ y]. (Since we are 
working in a closed finite world, it would be meaningless 
to include also a dependence on x0.) 

Consider now the X constraints. In the metric repre
sentation these take the form 

(5.2) 

which are the necessary and sufficient conditions that 
'lt[ y] be an invariant under coordinate transformations. 
In a finite world this means that 'lt depends only on the 
geometry of 3-space. One possible way to express 
this dependence would be to regard 'lt as a function of a 
discrete infinity of variables, namely all the independent 
invariants, beginning with f'Y 112d3x, f'Y 112 <a>Rdax, 

21 J. Schwinger (Ref. 20) proposes an alternative resolution of 
the factor ordering problem which, in the notation of the present 
paper, runs essentially as follows: Replace X in the Hamiltonian 
constraint by (-y312:JC), where () indicates that the factors are to 
be placed in some (arbitrary) symmetrical or9er. Then compute 

[ (-y312JC), (-y'312JC')] = !i[{y-yH, (x;)} + { -r'•-r•'i', (x;•)} ]o. ;(x,x') 
= !i[ { y-yH, (x;-)} + { -y'•-r•'i', (x;)} ]o,, (x,x'). 

Since the commutator 

[ r-r'i, (x; ·)] = i ( -y3-y'i+-y'3-y''i')o,; (x,x') 

is antisymmetric in x and x', it follows that 

whence 
[ 'l'"Y';, (x;•)J+[ -y'•-y••;·, (x;)] = 0, 

[ (-y312JC), ( -y''f2X')] = i[ -ya-y;; (x;·) +-y'"-r''i' (x;) ]o. ;(x,x') in which the 
x's stand to the right. Demonstration of consistency of the other 
commutators is elementary. 

f'Y 1' 2 <3>R2d3x, etc., which can be constructed m.• of 
products of the Riemann tensor and its covariant deriv
atives, with the topology of 3-space itself being sepa
rately specified. 

Higgs8 has pointed out that in an infinite world such a 
characterization of 'lt would be inadequate, for in this 
case the asymptotic coordinates also play a role. 'lt 
could instead be represented as a functional of any 
three of the six coordinate-invariant functions 22 : 

cpAB(TJ)= J 'Y1t2'YijtA .• rs.;oa(TJ-·icx))dax, 

A, B= 1, 2, 3, (5.3) 

where the S's are scalars satisfying the elliptic differen
tial equation 

(5.4) 

with the boundary conditions sA----t xA at infinity. The 
s's define a harmonic coordinate system, and Eqs. (5.4) 
yield ocpA8/olJ8=0 as a corollary. If cp11 , <P 12 , cp22 are 
arbitrarily chosen then cp 13, cp 23, cp33 are determined 
by integrating successively the equations iJ<P 13/iJTJ 3 

=- ocpllj 07/1_ ocp12j OTJ\ iJcp23j 07/3=- ocp12j OlJI_ iJcp22j 
O'T/2, ocpaa; OlJa=- ocpta; OlJt_ iJcp2a; OlJ2. If space-time is 
asymptotically flat and the coordinates x' are Minkow
skian at infinity, then these equations can be consistently 
integrated with the asymptotic boundary conditions 
cpAB ----t 0 AB; 

The above example is cited in order to re-emphasize 
the fundamental difference between finite and infinite 
worlds. In the finite case we may replace the symbol 
'lt[ y J by 'lt[<a>g] to display the fact that 'lt depends only 
on the 3-geometry, denoted here by <a>g, and on nothing 
else, whereas in the infinite case we must write some
thing like 'lt[<a>g,£], with £symbolizing the surround
ing laboratory which determines the asymptotic co
ordinates (including, in the Schrodinger picture, the 
coordinate x0). 

We shall denote by ~ the set of all possible 3-geome
tries which a finite world may possess. The following 
question will arise: Can a topology be imposed upon ~ 
which is both meaningful and at the same time useful 
in the context of the quantum theory of finite worlds? 
One possibility which suggests itself is to view ~ as an 
infinite-dimensional vector space whose "points" are 
discrete sets of invariants mentioned earlier. The 
topology could be that defined by the Cartesian metric 
on this space, and the symbol (a)g could be replaced by 
a set of vector wmponents. In fact, this possibility is 
not very useful, and although we shall actively pursue 
the question of assigning a metric, and indeed a pseudo
Riemannian structure, to ~. no advantage will be 
gained by attempting to make our symbolism more 
explicit. It will be sufficient simply to keep in mind the 
idea that ~ is not just a mere set but is actually a 

22 In the Schrodinger picture 'II would also depend on x0
. 
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manifold. Thus we shall say: :m is the domain manifold 
fot the state functional '11', and the (3)9 are its "points." 

So far nothing has been said about dynamics. The 
only way in which dynamics can enter the picture is 
through the Hamiltonian constraint. This now takes the 
form 

(5.5) 

where 
(5.6) 

According to our rule of freely commuting field opera
tors taken at the same space-time point, the functional 
differential operator 8/h•i must always be unde'rstood 
to give zero when acting on a 'Ykl at the same point.23 

If it were not for this rule, we might try to regard the 
first term in the parentheses of (5.5) as a kind of Laplace
Beltrami operator in a 6-dimensional Riemannian 
manifold having G;;kl as its contravariant metric. 
Although such an interpretation is inappropriate for 
the operator itself, it is nevertheless useful to regard 
Gifkl as a metric tensor and to study the properties of 
the manifold which it defines. These properties, 
which are derived in Appendix A, tum out to be quite 
interesting. 

The manifold in question will be denoted by M. When 
'Yii is positive definite (as it is for a spacelike hyper
surface) M has the hyperbolic signature-+++++. 
A "pure dilation" of 'Yii (i.e., multiplication by a 
multiple of the unit matrix) constitutes a typical 
"timelike" displacement. It is convenient to introduce 
the timelike coordinate 

(5.7) 

and any five other coordinates ?"A orthogonal to it. The 
covariant metric then takes the form 

where 

GAs=tr(y-1"(,A"(-1y,8 ), 

-r= (-y;;). 

(5.8) 

(5.9) 

(5.10) 

Expression (5.8) reveals Mas a set of "nested" 5-dimen
sional submanifolds, all having the same intrinsic shape 
and ditfering only in the scale factor (3/32)?"2• The shape 
is described by the positive-definite metric GAB which, 
since expression (5.9) remains invariant under a dilation 
of the y's, is independent of r. 

The manifold having GAB as a metric will be denoted 
by M. It is shown in Appendix A that the geodesic 

21 There is nothing automatically pathological, however, about 
having two function~! derivatives acting at the same point, ~ts in 
(5.5;. For example, if b=!Jdxfdx'rp(x)K(x,x')rp(x') where rp is 
an arbitrary function and K is a fixed kernel, then 1J2Ilorp(x)o<p(x) 
=K(x,x). Pathology occurs only if K(x,x') is singular at x'=x. 

equation in M takes the form 

d2y -~-~dy =0, tr(-r-ldy)-=o. 
ds2 ds ds ds 

(5.11) 

This has the general solution24 

y(s) =: M"' e11iM, (5.12) 
•· 

where M is an arbitrary nonsingular 3X3 matrix and N 
is subject only to the restrictions 

N"'=N, trN=O, trN1-1, (5.13) 

the last of which guarantees that S is the arc length. 
Since eN• is analytic for all values of s, M is geodesically 
complete. It is not difficult to show that any two points 
of M may be joined by a unique geodesic and that if 
the two points are represented by symmetric matrices 
"(1 and "(2 having the same determinant then their 
distance of separation is { tr[ln( y 1-

1 y2) ] 2} 112. The 
manifold M is evidently noncompact and diffeomorphic 
to Euclidean 5-space. 

By straightforward computation one may verify 
that the Riemann and Ricci tensors of M have the 
respective forms 

~ABeD= tr[ "(-1"(,D"(-1"(,C"(-I 

X ("(,A"(-1"(,8- "(.B"(-1"(,A)]' (5.14) 

RAB=-tGAB· (5.15) 

From the latter it follows that M is an "Einstein space" 
of constant negative Gaussian curvature. It is further
more not difficult to show that the Riemann tensor 
(5.14) has vanishing covariant derivative, which implies 
that M is, in fact, a symmetric space26 with a certain 
group structure. The group structure may be deduced 
from the observation that the transformation 

(5.16) 

where L is an arbitrary constant nonsingular 3 X 3 
matrix, leaves the metric (5.9) unchanged. The full 
linear group~n three dimensions therefore acts isometri
cally on M. Because of the dilation invariance of the 
points of M, however, it is only the simple Lie Group 
SL(3,R) which acts effectively on it. It is easily verified 
that SL(3,R) acts transitively on M and, moreover, 
that the isotropy subgroup25 at any point is isomorphic 
to S0(3). M may therefore be identified as the coset 
space 

M =SL(3,R)/S0(3). (5.17) 

Although the manifold J? is geodesically complete, 
the manifold M is not. It is shown in Appendix A that 
all geodesics in M ultimately hit a frontier of infinite 

24 The tilde""'" denotes the transpose. All matrices are assumed 
real. 

26 See, for example, S. Helgason, Differential Geometry and 
Symmetric Spaces (Academic Press Inc., New York, 1962). The 
author is indebted to P,!ofcssor Helgason for enlightment as to 
the group structure of M. 
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curvature. "Timelike" and null geodesics hit it at one 
end; "spacelike" geodesics hit it at both ends. This 
frontier, which will be denoted by F, is loc:ated at r=O, 
as may be inferred from the readily computed curvature 
scalar 

(5.18) 

A question now arises as to what estent the Rieman
nian structure of M mav be regarded as imposing a 
structure on ;m by way o'f the Hamiltonian constraint. 
Without attempting to answer tb.is question directly, 
we may point out certain very suggestive features of 
the theory. First of all, the existence of the timelike 
coordinate r in M suggests that a corresponding 
"intrinsic time" exists in ;m and that the Hamiltonian 
constraint does indeed have dynamical content. This 
idea is given support by the following considerations: 
The specification of a given 3-geometry requires the 
assignment of essentially 3 independent quantities at 
each point of 3-space. If we regard the usual enumera
tion of the degrees of freedom possessed by the gravi
tational field, namely two for every point of 3-space, as 
being valid in a finite world, this leaves one quantity 
per 3-space point to play the role of intrinsic time. 
Baierlein, Sharp, and Wheeler11 •26 have shown in the 
classical theory that if the intrinsic geometry is given 
on any two hypersurfaces then, · except in certain 
singular cases, the geometry of the entire space-time 
manifold, and hence the absolute time lapse between the 
two hypersurfaces, is determined. Moreover, it is deter
mined solely by the constraints. Analogously, the 
quantum theory is completely determined by the 
transformation functional (<a>g'J (3)g"), where J <a>g) 
denotes that state of the gravitational field for which 
there exists at least one hypersurface having an in
finitely precise geometry <a> g. Wheeler11 has emphasized 
the imporatnce of the two-hypersurface formulation 
of gravidynamics (or "geometrodynamics" as he calls 
it) and has suggested the use of the Feynman sum
over-histories method to compute the transformation 
functional. 27 

Another suggestive feature of the theory is the follow
ing. Because of the hyperbolic character of M the 
Hamiltonian constraint (5.5) resembles a Klein-Gordon 
equation, with -'¥1' 2 <3>R playing the role of the mass
squared term. An important difference, however, is 
that <a> R can be either positive or negative, and hence 
the "wave" propagation of the state functional is not 
confined to timelike directions. 

26 R. F. Baierlein, D. H. Sharp, and ]. A. Wheeler, Phy~. Rev. 
126, 1864 (1962). There is r;othing mysterious aJ;>out th~ e~stence 
of a manifold of "time" vanables. The same mamfold exists m con
ventional field theory in those formulations which make the state 
functional depend on an arbitrary spacelike hypersurface. 

•
7 The sum-over-histories or "functional integral" method has 

not yet been applied to any "practical" problem of quantum 
gravidynarnics. It will be encountered in he~ristic and _formal 
applications in the following papers of this senes. Its consistency 
with the Dirac theory has been demonstrated by Leutwyler. [See 
H. Leutwyler, Phys. Rev. 134, BllSS (1964).] 

In spite of this difference the anal~gy with. ~he 
Klein-Gordon theory suggests the followmg defimtwn 
for the quantum-mechanical inner product of two states 
"ira and "i'b: 

- -
xii(dziJGiik~- ~iik!dzii\'lra[<s>g]. (5.19) 

% ~o-rk! ~o-rk! J 
The infinite product, which arises because ~5.5) ~s 
really not just one equation but oo 3 equat~ons, IS 

here taken over all the points of 3-space, and IS to be 
understood in a formal sense as representing the result 
of a limiting process based on a sequence of l~ttices in 
3-space, each lattice requiring the introductwn of a 
corresponding normalizing constant Z. The. sym~ol Z 
denotes the topological product of a set of 5-drmen;nonal 
M-hypersurfaces Z(x) (one chosen at each pomt of 
3-space), the d-zii being their directed surface el~me~ts. 
It is an immediate consequence of the Hamiltoman 
constraint that this inner product is independent of_the 
choice of Z(x)'s provided s~e kind of appropnate 
boundary conditions are satisfied at the "edges:• of Z. 
It is also worth noting that since the Giik! do not mvo~ve 
any spatially differentiated 'Y'S, the operators standmg 
in the infinite product all commute, and hence no 
factor-ordering difficulties arise here. 

In view of the coordinate invariance of the state 
functionals the inner product integral (5.19) contai~s a 
3X oo a_fold redundancy arising from the geometncal 
indistinguishability of 3-metrics which differ o~y by 
coordinate transformations.28 This produces a diverg
ence which must be formally absorbed into the normal
ization constant Z, and reminds us that ;m is not just 
the topological product of M with itself over all the 
points of 3-space, but is a subspace of the latter 
manifold. 

Another difficulty with the definition (5.19) concerns 
the problem of "negative probabil_ity." This prob~em 
arises here, just as it does for the ~lem-Gord~n e~uatwn, 
from the fact that the Hamiltoman constramt mvolves 
a second derivative with respect to the "time" co
ordinate. If the Z(x)'s are chosen "spacelike," then the 
only way to assure positive definiteness o!, (5:1?), 
when 'lrb='lr is to restrict the content of 'lr a to positiVe 

a, " • " frequency" components with respect to every trrne 
coordinate r(x). Restriction to such components, 
however, implies that Wa vanishes no:vhere in the r~nge 
- oo <r< oo and this conflicts with the one-s1ded 
character of' r, namely r>O, which follO\'-'S from the 
geometrical analysis revealing the existence of a fro~
tier in M at r= 0. One might hope that an analytiC 
co~tinuation could be performed around r= 0, but 

2s A coordinate transformation generally produces a change in 
l:, but this does not affect the integral. 
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whether this would have any physical meaning is 
unclear. The singularity in the Hamiltonian constraint 
at t= 0 is a strong one, as may be seen by rewriting (5.5) 
in the form 

X'1Jr[C3>g]=O, (5.20) 

which makes use of (5.7) and (5.8). The question at 
issue is whether the frontier in M generates a corre
sponding barrier in ;m beyond which there is no possi
bility of extending the state functional. Unfortunately, 
in the present state of our knowledge no clear-cut 
ans\\er can be given to this question. Some of the 
problems which have a bearing on it, however, can be 
identified. These will now be discussed. 

6. THE METRIC OF ;m:, THE HAMILTON-JACOBI 
EQUATION AND GRAVITATIONAL COLLAPSE 

The most obvious way to approach ;m is through the 
manifold M""', which is defined formally as the topologi
cal product of M with itself over the points of 3-space: 

(6.1) 
" 

The "points" of M""' are the matrix functions 'Y•i(x). 
For brevity they will be denoted simply byy. In practice 
the definition (6.1) must be supplemented by some sort 
of continuity requirements. For example, y may be 
required to be continuous and piecewise differentiable. 
However, we do not wish to be precise about this here, 
since as yet no rigorous theory of the role of the manifold 
;m in the quantum theory exists. We wish merely to 
point out some of the issues involved, and to leave the 
formalism itself as unencumbered as possible. Thus we 
shall be willing to admit any sort of pathology for y 
which we can get away with, i.e., for which some sort 
of physical interpretation exists, however idealized, 
which permits y to be handled in a consistent fashion. 
For example, geometrical singularities at which the 
Riemann tensor behaves like a differentiated li func
tion, or for which integrals like f ')'1' 2 ca> Rdx still 
exist, will not be excluded a priori. In the same spirit, 
we shall not place any restrictions on coordinate 
transformations beyond perhaps requiring them to be 
differentiable (so that tensor transformation laws exist 
almost everywhere) and one-to-one (so that they form 
a group). Thus we shall not automatically exclude 
transformations for which the Jacobian either vanishes 
or diverges at certain points. The ultimate question 
will always be: What is the barrier beyond which we 
t:annot go? In every case this will probably depend, to 
some extent at least, on the context, and we do. not 
wish to prejudice the answer in advance. 

There is, however, one trivial pathology which may 

may be avoided without loss of generality, namely, 
coordinate singularities which arise from the impossi
bility of. covering compact manifolds with a single 
well-behaved coordinate system. We shall alway,; as-, 
sume that 3-space is covered with a finite set of over
lapping coordinate patches, each of which can be put 
into one-to-one correspondence with a certain portion 
of the Cartesian mesh in Euclidean 3-space, and on the 
boundaries of which the coordinates are held fixed. In 
addition a set of supplementary connection formulas 
between patches must be assuemd to hold in the overlap 
regions. All of this paraphernalia is to be understood 
as included in the defini\ion (6.1), which means that 
each function ')';j(x) is really a set of functions, one in 
each coordinate patch, and that the x's in Eq. (6.1) 
are to be understood as ranging over all values in all 
patches. 

Now let y to be a fixed point of M""8
• Consider the set 

of all points which may reached from y by coordinate 
transformations. This set is known as the orbit of y 
under the coordinate transformation group and will 
be denoted by "orb y." There is a one-to-one corre
spondence between the orbits in M«> 8 and the points of 
;m, In fact no generality is lost if they are identified: 

orby= (3)g. (6.2) 

Suppose M""' is endowed with a metric. (That this is 
feasible will appear in a moment.) If this metric satisfies 
a certain condition then it will impose, in a natural way, 
a metric on ;m:, The condition is that the coordinate 
transformation group in 3-space be an isometry group 
of M«>', The associated metric in ;m is then obtained by 
defining the distance between two neighboring orbits 
to be the shortest distance in M«> 8

• 

It is shown in Appendix B that the above condition 
is satisfied if and only if the metric in M«>' transforms, 
under 3-dimensional coordinate transformations, con
tragrediently to the Kronecker product 'Y ;{'( k' Z'. This 
means that the metric in M«>', which we shall denote 
by giik'1', must be a contravariant bitensor density of 
weight at both x and x'. 

There are infinitely many contravariant bitensor 
densities which can be constructed out of the 'Y's and 
which might serve as acceptable metrices for M«>'. Of 
these, however, there is only a single one-parameter 
family which is local, i.e., which involves only undif
ferentiated 'Y's and for which both giik'l' and its inverse 
vanish when x~x'. This family is given by 

giik'l' = !'Yl/2( 'Yik'Yiz+'Y;z'Yi"+ J..'Yii-ykZ)o(x,x') , (6.3) 

where 'A can assume any real value except -l If we 
wished to impose a positive-definite metric on ;m, so 
that we could use, as the condition for the identity of 
two 3-geometries, the vanishing of the "distance" 
between them, then the metric of M""' itself would have 
to be positive definite. In the present case this requires 
'A>-~, the simplest choice being 'A= 0. On the other 
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hand, the choice f.=- 2 is the natural cl~oice if we 
assume that Eq. (6.1) defines not merely a topological 
product but also a geometrical structure generated by 
the original metric on M. For then we have 

I (>.. (>a"b"k'l'd3 II_ • lc'l' 
iJ'Ja" b11 U X - Uij , (6.4) 

where 
(6.5) 

with G;1~cz given by Eq. (5.6). In this case the "arc 
length" df!J associated with a displacement d'Y;; in M"'8 

is given by 

d6 2= I d3x I d3x' giik'l'd'Y;id'Yk'l' 

Geodesics in M"' 8 are not, in general, geodesics in mt:. 
However, in Appendix B it is shown that if a geodesic 
in M"'' intersects one of the orbits in its path orthogo
nally then it is a geodesic in mt:, and, moreover, it 
intersects every other orbit in its path orthogonally. 
This means that it is in principle possible to use formula 
(A69) of the Appendix to determine the distance be
tween two 3-geometries. In practice, of course, the 
amount of labor involved is formidable, assuming that 
the 3-geometries are given in the form of two matrix 
functions i'I(x) and y2(x). One must integrate expres
sion (A69) over 3-space and then find the minimum of 
the integral as one of the functions, say y1(x), is held 
fixed while the other ranges over the various equivalent 
forms it can take under coordinate transformations. 
This means solving the complicated set of nonlinear 
partial differential equations which result from the 
corresponding variational principle and which, in 
effect, yield the coordinate transformation which "lines 
up" i'I(x) and y2(x), so that a geodesic from one to the 
other intersects orbits orthogonally. 

Such complications can be avoided if one merely 
wants to know the distance from a given 3-geometry to 
the frontier. 29 In this case, s;ince the frontier is an ex
tended object and is at different distances-spacelike, 
timelike, and null-in different directions, it is necessary 
to specify a direction d'Y ;;/ d#J in addition to the 3-

29 By frontier we do not necessarily mean barrier. It must be 
repeatedly emphasized that very little is known about the general 
conditions under which extensions beyond the frontier can be 
carried out. Here we are defining the frontier to be simply the locus 
of points j' in M"' 3 for which the matrix -y;;(x) has one or more 
singularity points (-y=O) in 3-space, regardless of whether or 
not these singularity points represent real geometrical singularities. 
A formal definition would be 

F= U F(x) II M(x'), 
x'~x 

where II and U denote the topological product and union, 
respectively, and F(x) is the frontier of M(x). 

geometry itself. Here #3 is either the arc length (6.6) or, 
in the exceptional null case, an affine parameter, and 
d-yiifd#J must satisfy the starting condition [cf. Eq. 
(B24)] 

·{(d'Yii) (d'Yik) J 'Y' -- - -- =0, 
df!J .k df!J .i 

(6.7) 

which guarantees that the starting direction will be 
orthogonal to the starting orbit. The square of the dis
tance in the frontier in the assigned direction is then 
given by30 

~2=min2u(y,dy/d~) Giikl_,__ , [ 
d'Yi. d'Ykl]-! 

d~ df!J 
(6.8) 

where G'ikl and u are defined in Appendix A, Eqs. (Al) 
and (A63), respectively, and "min" denotes the mini
mum value over 3-space. The metric tensor at the point 
(or points) in 3-space at which the minimum occurs will 
become singular when the "point" y in M"' 3 has pro
gressed a distance ~ along the geodesic. The geodesic 
can then go no further without changing the signature 
of a portion of 3-space. The frontier has been reached. 

It does not automatically follow that 3-space acquires 
a geometrical singularity at the frontier. However, there 
are several facts worth noting. 

(1) The occurrence of a singular metric cannot be 
avoided by changing the coordinates as one proceeds 
along the geodesic. Although it is true that a coordinate 
transformation can carry one from one point to another 
in M"'3 and even, seemingly, away from the frontier, 
yet since expression (6.8) is a scalar, ~ remains un
changed. What happens is that the coordinate trans
formation also changes the direction d'Y;1/d6. Moreover, 
the covariance of Eq. (6.7) ensures that the ortho
gonality of the geodesic to the orbits is left unaffected. 

(2) As long as no coordinate transformations are 
performed while i' is moving along its orthogonal 
geodesic, the coordinate system in 3-space, if initially 
nonsingular, will remain nonsingular until the frontier 
is reached. No such statement can be made for non ortho
gonal geodesics, which in some cases follow a circuitous 
route in ;m; from a given <3lg back again to the same 
(alg, but in a different coordinate system. 31 

(3) It is not necessary that the metric become singu
lar simultaneously at all points of 3-space in order that 

ao When d-y;;/d~ is a null vector in M, expression (6.8) becomes 
an indeterminate form 0/0. At such points in 3-space (6.8) may, 
in view of Eq. (A54) which implies ~=constantX"Y1 11, be replaced 
simply by ~=4(-y'id-y;;/d~)-2. 

at In attempting to visualize M"' 3 and m1: it is helpful to have a 
simpler model in mind. The following is suggested: Let the big 
manifold be Euclidean 3-space and let the group be rotations about 
an axis. The orbits are then circles concentric with the axis and at 
right angles to it, and the orbit manifold is the Euclidean half
plane. A straight line (i.e., geodesic) in the big manifold will be a 
geodesic in the orbit manifold if it intersects or is parallel to the 
axis, so that it intersects every circle in its path at right angles. 
A straight line which is skew to tlie axis, however, is a hyperbola 
in the orbit manifold, and a skew line at right angles to the axis 
returns again to each orbit which it intersects. 
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the frontier be reached. On the other hand, this can 
happen. It happens, for example, when d'Y;;/d~=con
stantX'Y;;, which obviously satisfies (6.7). In this case 
the geodesic motion is one of pure dilation, and }he 
square of the distance to the frontier is, apart from an 
unimportant factor, simply the volume of 3-space. 

(4) In 'the case of a pure dilation it is obvious that 
a geometrical singularity (zero volume) does occur at 
the frontier. That geometrical singularities must also 
occur in many other cases as well follows from the 
readily verified relation 

d <3lRjde=- <3lRiid'Yii/d6, (6.9) 

which holds as long as condition (6.7) is satisfied. In 
Appendix A it is shown that most geodesics (i.e., all 
but a set of measure zero) strike the frontier at points 
where some of the "'ii (and hence some of the d'Y;;/dfJ) 
become infinite, even though 'Y itself vanishes. Except 
in special cases, therefore, expression (6.9) will acquire 
singularities at the frontier. 

With these mathematical preliminaries in mind let 
us now have a look at quantum dynamics. It is helpful 
to begin by analyzing Eq. (5.5) in the WKB approxi
mation, so as to make the maximum possible use of 
classical ideas. We write 

'lt[(3)g]= a exp(i'W), (6.10) 

where a and 'W are assumed to be real functionals 
satisfying (roughly) the restriction 

(6.11) 

The phase then satisfies the Hamilton-Jacobi equation32 

ffW ow 
G;;u-- --= 'Y t/2 <a> R' 

o"f;; hkl 
(6.12) 

while the amplitude satisfies the conservation law 

(6.13) 

In addition, the X constraints impose the restrictions 

(ow) (oa) - =0 - =0 
O"f;; .j , h;; .j • 

(6.14) 

Each solution of the Hamilton-Jacobi equation (6.12) 
determines a family of solutions of the classical field 
equations (i.e., a family of Ricci-flat 4-geometries) 
having the following property: For every 3-geometry 
there exists one and only one member of the family 
which has the 3-geometry as a spacelike hypersection, 
i.e., for which the 3-geometry is to be found among the 
infinity of spacelike hypersections which the member 
admits. Once 'W is given, each 3-geometry determines a 

82 The Hamilton-Jacobi equation for general relativity appears 
to have been first written down by A. Peres, Nuovo Cimento 
26, 53 (1962). 

unique 4-geometry. The 4-geometry may be computed 
by making the identification 1rii= ffW /O"f;; and inte
grating the equation 

a'Y;;/ ax0 = 2aG;jklffW I cry kt+f3i ;+f3).i' (6.15) 

which follows from (2.5) and (3.3). 33 The quantities a 
and {3; are, as always, completely arbitrary, at least in 
sufficiently small finite regions. (Some global restrictions 
will generally exist.) 

It is not hard to verify that (6.15) does indeed yield 
a solution of the classical field equations for each initial 
3-geometry. One simply differentiates (6.15) with 
respect to x0 and replaces ffW /hkz by its expression in 

·· terms of a, {3;.;, and a'Y;;/ ax0• One finds . 

. aG;;kz 
"'f;;,oo= (lna),o("f;;,o-{3;.;-,6;.;)+-

a'Ymn 

X (a'Gm'n'r'•' ffW +,Sm• .n•)d3x'. (6.16) 
Crrr1

B
1 

The integration which appears in the last term of this 
equation may be performed with the aid of the identities 

o2'W ffW 
Gm'n'r's' ___ _ 

O"fklO"fm'n' li'Yr'•' 

1[aGmnr• o'W o'W J =-- ------+-yll2(<a>Rkz_'Ykz caJR) 
2 d"fkl li'Ymn O"frs 

X o(x,x')+!'Y't/2'Ym'n''Yr'•' 

X(lim'r'kl,,.,,,-lim'n'kl.r'a'), (6.17) 

( 
lj2'W ) li'W 

=--(lli ',kl m'-om' ,kl .) 
M n,. . n .r , 

lrtkzO'Ym'n' .n' lrtn'r' 
(6.18) 

which are obtained by functionally differentiating Eqs. 
(6.12) and (6.14) and making use of (4.25). The result 
is a set of six local-field equations which, together with 
(6.12) and (6.14) re-expressed in terms of a, ,6;.;, "f;;,o, are 
equivalent to the ten Einstein empty-space equations. 

Let us now make the simplifying assumptions a,;= 0, 
{3;=0. We then have 

Giikl'Y ii,O'Ykz,o= 4a2'YI/2 (3) R. (6.19) 

Let us also assume that the integral 

I= J "1 112 <3>Rd3x (6.20) 

83 The inverse problem of constructing theW which corresponds 
to a given family of solutions of the classical field equations has 
been analy2;ed in detail by U. H. Gerlach (to be published). The 
author is indebted to Gerlach for the opportunity of studying thil: 
analysis in manuscript prior to publication. 
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(extended over the whole of 3-space) is nonvanishing. 
We may then choose 

a=!\I\-1
'

2
, (6.21) 

which permits x0 to be identified with the arc length i5 in 
the manifold M""3 and permits the first of Eqs. (6.14) 
to be re-expressed in the form 

(6.22) 

which is identical with (6. 7), showing that x0 is in fact 
also the arc length in :Jrr. Finally, Eq. (6.16) takes the 
form 

If the right-hand side of Eq. (6.23) were zero, the 
sequence of 3-geometries (as i5 varies) would trace out a 
geodesic in :Jrr. The right-hand term may therefore be 
regarded as a "force" term which caused the actual 
"trajectory" of 3-space to deviate from a geodesic. 
The following important questions arise: Is this "force 
term" powerful enough to keep the trajectory from 
striking the frontier? If not, what does arrival at the 
frontier mean physically? 

Before giving answers to these questions, let us first 
take a crude over-all look at some of the simple impli
cations of Eq. (6.23). It is not difficult to verify that if 
this equation is multiplied by !'Y1 ' 2'Y;; and the result is 
integrated over 3-space, the following equation is 
obtained: 

d2V d lna dV 
------=-t, 
di52 d~ d~ 

(6.24) 

or equivalently, 

(6.25) 

where r is the "proper time": 

dr/d~=a. (6.26) 

From this it follows that the curve of V as a function 
of r is concave downward whenever I is positive. Under 
these circumstances an expanding world tends to "slow 
down" while a contracting world tends to accelerate 
towards collapse. 

A case for which I is positive is that in which 3-space 
has the geometry of a 3-sphere. The geometry cannot, 
however, remain spherical more than instantaneously, 
since the right-hand side of Eq. (6.19) is then every
where positive, which requires the vector d'Y;;/d~ to be 
"spacelike" in M for all x, thus ruling out the possibility 
of a pure dilation. The derivative d')';;/di5 must contain 

shearing components corresponding to the presence of 
the gravitational radiation which is, in fact, needed in 
order to "close up" the universe. On the other hand, the 
3-geometry may still be spherical in a coarse-grained 
sense. That is, although the sign of 'Y 1' 2 <3lR may 
fluctuate at a fine-grained level due to the presence of 
gravitational waves, its mean value may approximate 
that of a 3-sphere. In this case Eq. (6.25) takes the ap
proximate form 

(6.27) 

leading to a total lifetime of the universe given by34 

=V'l cn-1(0J !)Rmax= 2.62Rmax, (6.28) 

where Rmax is the radius of maximum expansion. Here 
it is clear that the "force term" in Eq. (6.23) does not 
prevent the 3-geometry from striking the frontier. 

In the general case there are two factors which govern 
the trajectory of 3-space. Firstly, the condition a,;= 0, 
which has been adopted in the above discussion, is 
known to be a poor one for keeping the hypersurfaces, 
x0= constant, smooth. When these hypersurfaces are 
sandwiched together, as here, with spatially uniform 
intervals, they often quickly develop geometrical 
singularities which have nothing to do with the geome
try of space-time. 35 Such singularities can usually be 
avoided simply by relaxing the condition a,;= 0. 
However-and this is the second factor-it is now 
known from the work of Avez,36 Penrose, 37 Hawking, 3B 

and Geroch39 that a nontrivial singularity in space-time 
"almost always" occurs at some point in the history oi 
any physically interesting universe. At such a point 
abandonment of the condition a,;=O is of no use. 
3-space will acquire a geometrical singularity anwyay. 
Thus, if the initial hypersurface is sufficiently close to 
the point of onset of a change in 3-space topology, or if 
a so-called "trapped 2-surface" 87 is on the point of 
being born within it, then it will develop a geometrical 

34 This is to be compared with T = 2Rmu: for a Friedmann uni
verse filled with radiation treated as an ideal gas. Note that it is 
not possible to use expression (6.28) as an upper bound on the 
lifetime of the universe. Although it is easy to show that it is the 
spherical geometry which, for fixed V, makes I stationary (i.e., 
independent of small variations in the metric), this stationary 
point is neither a maximum nor a minimum, and hence it is not 
possible to assert that I~6(4n-4 V)lll, • 

35 The phenomenon occurs already in a flat space-time. It is 
not possible to construct a family of uniformly spaced curved 
spacelike hypersurfaces in Minkowski space without the members 
of the family developing a geometrical singularity either in the past 
or in the future. The singularity always develops in the convex 
direction, contrary to the situation in a Euclidean manifold. 

•• A. Avez, Ann. Inst. Fourier (Grenoble) 13, 105 (1963). 
17 R. Penrose, Phys. Rev. Letters 14, 57 (1965). 
asS. W. Hawking, Phys. Rev. Letters 17, 444 (1966). 
ag R. P. Geroch, Phys. Rev. Letters 17, 445 (1966). 
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singularity which has nothing to do with the mainte
nance of the condition a,i=O. In this case the force 
term in (6.32) is again powerless to prevent the tra
jectory of 3-space from striking the frontier; indeed it 
may hasten the impact. 

The occurrence of a singularity in space-time itself 
is known as gravitational collapse. Gravitational col
lapse may involve the whole of 3-space, as when the 
vohune of the universe goes to zero, or it may involve 
only a small part of it (e.g., a collapsing superstar). It 
seems extremely likely that the almost universal inevi
tability of gravitational collapse is closely connected to 
the existence of the frontier in ~. However, the estab
lishment of this connection in rigorous terms is a major 
problem which remains unsolved. The existence proofs 
of Refs. 36-39 give no indication of the precise physical 
nature of the collapse singularity except for the state
ment that the normal causal properties of space-time 
break down there. This alone, of course, is enough to 
guarantee that the singularity represents a real barrier 
beyond which it is impossible to extend the solution of 
Einstein's equations. It means that in certain regions of 
the universe (or in the universe as a whole) time for the 
classical physicist, ultimately comes to an end beyond 
which he can make no further predictions. 

The question now arises whether the classical col
lapse barrier, which we shall denote by CB, is also a 
barrier for the solutions of the quantum equation (5.5). 
That the answer is not obvious may be seen as follows. 
Consider first a point <3l9 in ~ which is not on CB. If 
<3l9 has a singularity this must be due to the hyper
surface x0= constant being chosen poorly. At the singu
lar point in 3-space both the right and left sides of Eq. 
(6.12) will diverge. Correspondingly the two terms inside 
the parentheses of Eq. (5.5) will each contribute a 
divergence at this point. The two divergences will, 
however, cancel so that Eq. (5.5) is still satisfied. 
Consider now a point on CB. Here something special 
happens which causes Eq. (6.12) to break down. How
ever, it does not automatically follow that Eq. (5.5) 
likewise breaks down, for there exist possibilities for 
treating Eq. (5.5) which have no counterparts in the 
classical theory. For example, we note that if 'W is a 
solution of Eq. (6.12) then so is -'W. Moreover, the 
addition of an arbitrary constant to 'W leaves Eq. 
(6.12) unaffected. Let this constant be adjusted so that 
'W vanishes at the point on CB in question, and choose for 
the WKB form of the solution of (5.5), the superposition 

'lt = a[ exp(i'W)- exp( -i'W)]. (6.29) 

Then 'lt itself vanishes at the barrier, and this might 
conceivably alleviate the singularity in Eq. (5.5) which 
would otherwise occur, and permit an extension of 'lt 
beyond the barrier. 

If one is looking for an example on which to practice 
hand-waving arguments he might consider a situation 
in which 3-space is about to undergo a change in 

topology. It can be shown that a change of topology 
requires (a) the development of a geometrical singularity 
in 3-space and (b) a breakdown in the causal structure 
(e.g., hyperbolic signature) of space-time at the onset 
of the singularity. Therefore topological transitions 
cannot be handled classically. However, since the 
singularity in <aJ9 need occur at only a single point of 
3-space it may develop in such a way that the corre
sponding singularities of Eq. (5.5) all cancel. We are 
careful, of course, not to say that the singularities will 
cancel. No one really knows whether topological 
transitions can be handled quantum mechanically. 

Although the classical and quantum barriers may not 
be identical, and although each may depend to some 
extent on the particular solution of the Hamilton
Jacobi equation (6.12), or of the "wave equation" (5.5), 
under consideration at the moment, it seems very 
probable that there exists an irreducible core which is 
common to all barriers. We have suggested that it may 
be possible to continue 'lt past 3-geometries which con
tain isolated singularities. However, it is extremely 
difficult to imagine bow such a continuation could be 
performed beyond a 3-geometry which has a dense set 
of singularities, or which is singular at all of its points, 
e.g., a 3-space of zero volume. It is therefore likely that 
the following set theoretical inequality holds: 

orb II F(x)CCBQCCB, (6.30) 
X 

where CBQ denotes the quantum barrier. In the remainder 
of the paper we shall assume that this inequality does 
bold. 

The fact that CB is not the empty set is an embarrass
ment to the classical physicist, for it means that his 
theory breaks down. The fact that CBQ is not the empty 
set, however, is not necessarily embarrassing to the 
quantum physicist, for he may be ahle to dispose of it 
by simply imposing, on the state functional, the follow
ing condition: 

(6.31) 

Provided it does not turn out to be ultimately inconsistent, 
this condition, which is already suggested by (6.29), 
yields two important results. Firstly, it makes the 
prob~bility amplitude for catastrophic 3-geometries 
vanish, and hence gets the physicist out of his classical 
collapse predicament. Secondly, it may permit the 
Cauchy problem for the "wave equation" (5.5) to be 
handled in a manner very similar to that of the ordinary 
Schrodinger equation. Thus let ~ be a bypersurface like 
that which appears in Eq. (5.19). Since the dimen
sionality of IlxF(x) (the orbit of which forms the 
"core" of CBQ) is the same as that of ~. namely 5 X oo 3, 

it would appear that the specification of 'lt on ~. 
together with the boundary condition (6.31), is equiva
lent to its specification on two hypersurfaces and hence 
suffices to determine 'lt[<3l9] completely for all <3l9. 
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If this heuristic argument [based on the analogy of 
Eq. (5.5) to the Klein-Gordon equation] is indeed 
valid, then it is not necessary to specify also the normal 
derivatives of 'If on ~. despite the fact that Eq. (5.5) 
is of the second differential order. 40 

The only obvious difficulty with condition (6.31) 
is that it makes the presence of "negative frequency" 
components in ·'If unavoidable (see the discussion at 
the end of Sec. 5) and hence leaves one very unclear 
as to how to use Eq. (5.19) to define inner products and 
at the same time maintain positive definiteness of prob
ability. In the following sections we shall show how this 
difficulty can be resolved in a special case. 

7. THE QUANTIZED FRIEDMANN UNIVERSE 

The simplest classical model which exhibits the 
collapse phenomenon is the Friedmann universe. If 
the Friedmann universe is assumed to be closed it 
must be filled either with gravitational radiation or 
with some other form of energy. It is not difficult to 
show that when other forms of energy a;~ present in 
addition to gravity, the Hamiltonian constraint condi
tion (4.3) is repJaced by 

(JC+ 3C)'l'= 0' (7.1) 

where 3C is the Hamiltonian of the system (or systems) 
giving rise to the additional energy. In order to avoid 
having to deal with entities as complicated as gravitons, 
with their spin and orbital states and their mutual 
interactions, we shall make use of such additional 
energy in the form of noninteracting material particles 
"at rest". The Friedmann universe is obtained by 
distributing these particles uniformly throughout a 
3-sphere and "freezing out" all the degrees of freedom 
of the gravitational field save one, namely, that which 
corresponds to the time-varying spherical radius R. 

If 'Yo<j denotes the metric (in some coordinate system) 
of a 3-sphere of unit radius, then the 4-metric of the 
Friedmann world may be written in the form 

0) "f··=R2'Yo .. 
' 'I,) 'J,)' 

"fij 
(7.2) 

where a and R depend only on x0• Substituting this into 
(2.6), integrating over the volume 21r2R 3 of the Fried
mann universe, and remembering that caJ R for a 3-sphere 
is 6/R2, we obtain for the effective Lagrangian of the 
gravitational field 

L= l2-rr 2[ -a- 1R(R,o)2+aR]. (7.3) 

As for the material particles (dust) which fill the 
universe, we shall, for reasons which will become clear 
as the analysis proceeds, endow them with internal 
dynamical degrees of freedom which may be described 

40 Alternative and more detailed heuristic arguments leading to 
the same conclusion have been given by H. Leutwyler, University 
of Bern report, 1965 (unpublished). 

by canonical coordinates q; and Lagrangians of the 
form l(q,q), the dot denoting differentiation with 
respect to proper time: 

(7.4) 

Just as we have done for the gravitational field, how
ever, we shall "freeze out" all the internal degrees of 
freedom save a small number by requiring all the 
particles to be identical and to be in coherent identical 
states (i.e., "in step"). Under these conditions the 
effective particle Lagrangian becomes 

L=aNl(q,a- 1q,o), (7.5) 

where N is the total number of the particles in the 
umverse. 

Adding (7 .3) and (7 .5) to obtain the total Lagrangian 
we see that once again we have the primary constraint 

1r= a(L+ L)/ aa.o= 0. (7.6) 

The wive function of the quantized Friedmann uni
verse therefore cannot depend on a. 

The total Hamiltonian becomes 

where 

H+H=7ra,o+ITR,o+P;q;,o-L-L 
=7ra,o+a(JC+3C), (7.7) 

ll= aLj aR.o=- 247r2a-1RR,o, 

P;= aLj aq'.o= N p;, p;= az; aqi, 

JC=- ll 2/487r2R-127r2R, 

3C=Nm, m=p;qi-l. 

(7.8) 

(7.9) 

(7 .10) 

(7.11) 

The symbol m is here used to denote the internal 
Hamiltonian of the particles because the Hamiltonian 
is, in fact, the rest mass, provided the arbitrary zero 
point of the Lagrangian l has been ;>roperly chosen. 
We note that the "kinetic energy" term in the gravita
tional Hamiltonian (7 .10) has the opposite sign (i.e., 
negative) from that of conventional Hamiltonians. This 
is because the only motion permitted to a Friedmann 
universe is one of pure dilation, and hence the co
ordinate R is "timelike." 

The condition 7r,o= 0 leads immediately to the 
dynamical constraint JC+ 3C= 0 which, in the quantum 
theory, takes the form (7 .1). In the R representation 
this becomes 

where factors have been ordered in such a way that the 
first term inside the parentheses becomes a one
dimensional Laplace-Beltrami operator, 41 and m is now 
the particle mass operator. Equation (7.12), which is 

41 Here a definite ordering must be chosen. Since the number of 
degrees of freedom is now finite the orderin& question cannot be 
treated as a problem in interpreting formally divergent symbols. 
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the analog of (5.5), must account completely for all 
the physical properties oi the Friedmann universe. 

It is by no means obvious how the familiar properties 
of the Friedmann world are to be extracted, in the 
classical limit, from Eq. (7 .12), nor is it obvious what 
significance is to b·· attached to 'l' in the purely quantum 
domain. Difficulties of this type are not new to physics. 
A similar problem faced Schrodinger when he first 
wrote down the equation of the hydrogen atom. In 
his case there was a period of intense discussion, largely 
guided by Bohr, which ultimately led most physicists, 
with only a few dissenters of whom Einstein was the 
champion, to accept what has come to be known as the 
"Copenhagen view." The Copenhagen view depends on 
the assumed a priori existence of a classical level to 
which all questions of observation may utlimately be 
referred. Here, however, the whole universe is the object 
of inspection; there is no classical vantage point, and 
hence the interpretation question must be re-argued 
from the beginning. While we do not wish to stress this 
point unduly, since, after all, the Friedmann model 
ignores the vast complexities of the real universe, it is 
nevertheless clear 'that the quantum theory of space
time must ultimately force a deviation from the 
traditional Copenhagen doctrine. 

Leaving aside these questions for the moment, let 
us note some of the simple mathematical properties o~ 
Eq. (7.12). If we carry out the point transformation 

X=R3'2, <I>= (aR;ax)I'2'¥= (~)1'2R-1'4'l', c7.13) 

Eq. (7.12) is converted to 

- (3/647!'2)a2<I>/ aX2+ 127!'2X 2' 3<I>= Nm<I>. (7 .14) · 

If the particles are in eigenstates of mass, so that m 
may be treated as a c number, and if the boundary 
condition 

<l>=O at X=O or, equivalently, '1'=0 at R=O (7.15) 

analogous to (6.31) is imposed, then Eq. (7.14) becomes 
simply the Schrodinger equation of a particle of mass 
327!'2/3 moving at energy Nm in the one-dimensional 
potential 

V,= oo, 

V = 127!'2X 213 , 

X<O, 

X>O. 
(7.16) 

Now unless the mass eigcnva)ue m happens to be such 
that 1Vm is one of the ai1owed eigenvalues of Eq. (7.14), 
the function <I> will not be normalizable but will be
have in an exponential manner for large values of X. 
This is not necessarily bad if we insist on viewing R, 
and hence X, as a "time" coordinate, for it is usually 
impossible to require that a state funttion be nor
malizable with respect to time. Moreo'ver, we may 
hesitate to allow the universe as a whole to determine 
the spectrum of masses which we can put into it,. for 
in the classical theory the universe exerts no such con
trol. However, several convincing arguments can be 

adduced which suggest that cf> must nonethelrss he 
normalizable. The most important of these is that a 

closed Friedmann universe has, in the classical theory, 
a maximum radius of expansion. lienee if a correspon
dence principle is to exist, based on a transition to a 
classical limit, R must be effectively bounded from 
above. The existence of the classical turning point, as 
is well known, corresponds to the restriction to nor
malizable state functions. 

For present purposes it sufT1ces to determine the 
normalizable solutions of Eq. (7.12) in the WKB 
approximation. From the phase ir:tegral condition 42 

(7.17) 

(7.18) 

we obtain the "energy" spectrum 

Nm= [487l'2(n+!)] 112 , n=0,1,2, · · ·. (7.19) 

Computation of the normalized state function itself 
involves only elementary integrals. Inside the turning 
point it is found to have the form 

'¥= (2/7l'Rmax) 112[(Rmax/R)-1}-Ii4 

Xsin{67!'{(2R -Rmax)(R(Rmax-R))1 ~ 

+RmaJhin-1((R/Rmax) 112)]}, (7.20) 

while outside it falls off to negligible values at distances 
of the order of Rmax - 113 beyond Rmax· 43 

In realistic situations this function has an enon~wus 
number of nodes. For a Friedmann world approxin~at
ing the actual universe one finds, very roughly, 

11"-' 10120' (7 .21) 

and if all the degrees of freedom of the real world were 
taken into account the number would be vastly greater. 
However, despite the enormity of the quantum num
ber, the function (7 .20) docs not provide a classical 
description of the universe, for it is a static function, 
composed of standing waves undergoing neither ex
pansion nor contraction. The standing waves nJay, to 
be sure, be regardcL as a superposition of waves 
"traveling" in opposite directions, those "traveling" 
in the direction of expansion (increasing R) correspond
ing, by virtue of the "timelike" character of R, to the 
"positive frequency" components mentioned at the 
end of Sec. 5, and those "traveling" in the direct ion 
of contraction corresponding to "negative frequenc:·" 

42 lle1e n+i is used in place of the usual n-f! because of Iile 
"hard wall" character of the potential (7.16) for X <0. 

43 Cf. Ref. 11, p. 462. 
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components. 44 However, in order to make this "travel" 
apparent we need some other coordinate besides R. 

It is at this point that the internal particle dynamics 
enter the picture. The collective internal motion permits 
the particle ensemble to be used as a clock. Classically 
the temporal behavior of R may be determined by 
means of the correlation which lxists between R and 
the qi. This correlation is described by the solutions of 
the Hamilton-Jacobi equation 

JC(R,aw 1 aR)+ 'JC(q,aw 1 aq) = o. (7 .22) 

We may assume the particle Lagrangian l to be that of a 
multiply periodic system. The constants of integration 
of Eq. (7 .22) arc then conveniently taken to be the 
action variables J; of the collective Lagrangian L, and 
since the equation is obviously separable we have 
solutions of the form 

'W=-W(R,J)+W(q,J)+const., (7 .23) 

where 

l=-(27r)-rf IIdR=l(l), II=-aWjaR, (7.24) 

the integral being taken over a complete expansion
contraction cycle of the Friedmann universe. For these 
solutions Eq. (7 .22) takes the separated form 

1 (aW)
2 

-- -- +127r2R='JC(q,aWjaq)=E(J), 
487r2R aR 

(7 .25) 

where E(J) is a certain function of the J;. 
The qi are obtained as functions of R and the J; by 

integrating the simultaneous equations 

dqijdR= Vi(q,J)jV(R,J), 
where 

Vi= (a'JCjaP;)p~aw;aq, 

V = (aJCj aii)rr-awtan= (241r 2R)-raw jaR. 

(7.26) 

(7.27) 

(7.28) 

The integrals of Eqs. (7 .26) are not hard to obtain. If 
Eq. (7 .25) is differentiated with respect to ];, one finds 

a2W aJ a2W aE 
V-- --= Vi----y-=-

aRaJ al; aqiaJ; aJ;' 

which, together with (7 .26), yields 

whence 

a2W aJ a2W 
--dqi=- ---dR, 
aJ;aqi aJ; aJaR 

aw aJ aw 
---+-=oi, 

aJ aJ; aJ; 

(7.29) 

(7.30) 

(7.31) 

44 Owing to the negative character of the kinetic-energy term 
of the Hamiltonian (7.10), the directions of "travel" of the ex
ponential components of a standing wave are opposite to the con
ventional ones. 

where the oi are "phase constants." Equations (7.31) 
may be solved algebraically to express the q's in terms 
of R and the constants of integration ];, oi. The o1 

determine the relative phases of the simultaneous oscil
latory motion!>, and the J; determine the amplitudes. 

In the quantum theory an analogous correlation 
between R and the qi can be established provided the 
state function has the form of a superposition of solu
tions of (7 .12) correspondillg to different eigenvalues of 
m. It is well known that a multiply periodic system 
cannot be used as a clock if it is in an eigenstate of 
energy. The uncertainty principle requires many 
different energy levels to be represented in its wave 
function. Here, however, we run into a very special 
difficulty which is peculiar to the quantum theory of 
space-time. The values which m can assume are already 
determined by the quantization condition (7 .19) quite 
independently of the form of the p:1rticle Lagrangian l. 
Hence, unless the operators 'JC and -JC have at least 
one eigenvalue in common, the Hamiltonian constraint 
(7 .1) will have no solutions at all. Equation (7 .1) is 
unlike an ordinary time-independent Schri:idinger 
equation in that it picks out only a single eigenvalue of 
the operator JC+'JC. Moreover, the latter operator, 
being the sum of two operators having spectra bounded 
respectively from above and from below, has itself a 
spectrum which stretches from - oo to oo . 

'For purposes of the present discussion we must 
assume not only that JC+'JC has a zero eigenvalue but 
that this eigenvalue is highly degenerate. We shall 
postpone until Sec. 10 a discussion of what the actual 
state of affairs may be in the real universe. For the 
present we concentrate on mathematical developments. 

We shall confine ourselves to the WKB approxima
tion and look for solutions of Eq. (7.1) of the form [cf. 
Eq. (6.11)] 

'll=A exp[i(-W+W)], (7 .32) 

where A is a real amplitude satisfying (hopefully) the 
inequalities [cf. Eq. (6.12)] 

l
aAJ J awl -«A-. 
aqi aqi 

(7.33) 

A differential equation for A may be obtained by sub
stituting (7 .32) into (7 .1). One finds 

[JC(R,- ia 1 aR- aw 1 aR) 
+'JC(q,-iajaq+aW ;aq)JA =0. (7.34) 

When the inequalities (7 .33) are satisfi.ed the "big" 
terms of (7 .34) already add up to zero by virtue of the 
Hamiltonian-Jacobi equation (7.22). In order to obtain 
conditions on A we must include the smaller, "higher
order" terms, and for this purpose it is convenient to 
introduce a smooth real test function cp(R,q) which 
vanishes outside a finite closed region in the R-q 
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manifold. 45 We then subtract the equation 

1"' dR J dq <PA[x(R, -iajaR-aw;aR) 

+:re(q, -iajaq+aW;aq)]A=O (7.35) 

from its complex conjugate and use the Hermiticity of 
JC and :fC to obtain 

1"' dRJ dq A[<P, JC(R, -iajaR-aWjaR) 

+:re(q, -iajaq+aWjaq)JA=O. (7.36) 

When the inequalities (7 .33) are satisfied, this becomes 
approximately 

which, by virtue of the arbitrariness of <P, implies (after 
an integration by parts) 

(7.38) 

This equation, which is the analog of (6.14), assures 
conservation of the "flux of probability" in the R-q 
manifold. 

The general solution of Eq. (7.38) can be obtained 
by making use of the relations 

where 

v a(Jij aR+ Via a if aq,.= o, 
a(Va2W ;aRaJ)faR=O, 

a(ViD)/ aqi= o, 

(7.39) 

(7.40) 

(7.41) 

D= det(D;i), DJ= a2W 1 aqiaJ,., (7.42) 

and where oi, in Eq. (7.39) is regarded not as a constant 
of integration but as a function of Rand the qi, defined 
by (7.31). It is easy to see that Eq. (7.39) follows from 
(7.29) and (7.31). Equation (7.40) is obtained by dif
ferentiating (7 .29) with respect to R, while (7 .41) is 
obtained by differentiating (7 .29) with respect to qk 
and multiplying by the matrix D-1k; inverse to (7.42). 
From these relations it follows immediately that 

A 2= (a 2W 1 aRaJ)DF(o), (7 .43) 

where F is an arbitrary function of the oi. 
Actually the form of F is not arbitrary, since there 

are other differential equations which the state func
tion (7 .32) must satisfy in addition to (7 .12), namely, 
the eigenvalue equations 

The oplfl'ators J(R,-iajaR) and J;(q,-iajaq) are ob
tained by solving the equations 

II=-aWjaR, P;=aWjaq; (7.46) 

for the J's in terms of II, R, and the P's and q's, making 
the replacements II ----7 - ia I aR, 1\ ----7 - ia I aqi, and 
carrying out appropriate Hermiticity symmetrizations. 
Now 

J(R,-iajaR)'I!= {exp[i(-W+ W)]} 
XJ(R,-iajaR-aw jaR) A, (7.47)· 

J;(q,-iaj aq)'I!= { exp[i(- W + W)]} 
xJ;(q,-iajaq+aW;aq)A. (7.48) 

Because of the identities 

J(R,-aw;aR)=J, J;(q,aw ;aq)=J; (7.49) 

the "big" terms of (7 .4 7) and (7 .48) already yield 
Eqs. (7 .44) and (7 .45). Hence the "higher-order" terms 
must vanish. With the aid of the inequalities (7.33) 
and a test function <P, as before, one easily finds that 
this implies 

a(A 2iJJ 1 am; aR= o, 
a(A 2aJ;/OP;)faq,.= o. 

(7.50) 

(7 .51) 

But aJ jan=- (a 2W jaRaJ)-1 and aJ;jaP1=IJ-\i. 
Hence, substituting (7 .43) into (7 .47) and (7 .48), and 
making use of the identity 

(7 .52) 

which can be shown to hold by virtue of the symmetry 
of aDk1jaqi in j and k, one finds that F must be a 
constant, independent of the o;. 

In order to obtain normalizable solutions of (7 .12) 
the J's must be quantized. In addition, the branch
point behavior of the functions Wand W at the classical 
turning points must be taken into account, and super
positions of the form (7 .32) corresponding to the dif
ferent branches must be employed. These superposi
tions are the standard WKB solutions. 

Suppose we freeze out all the collective particle 
degrees of freedom save one, and suppose this degree of 
freedom corresponds to a motion of libration in a smooth 
potential. Then we may distinguish two branches of 
the function W, a branch W+ which increases with 
increasing q and a branch w- which decreases with 
the increasing q. Similarly we may distinguish two 
branches, W+ and w-, of the function W. These 
branches are determined only up to arbitrary constants. 
The constants may be adjusted so that the WKB 
solutions take the form 

J(R,-iajaR)'It=J'It, 

J;(q,- iaf aq)'It= J;'It. 

(7 .44) 'Itn= An[exp(-iW n+)+exp(- iW n-)] 

(7.45) X[exp(iWn+)+exp(iWn-)], (7.53) 

" It is a ways to be understood that the R-q manifold is re
stricted to positive values of R (excluding zero). 

where 
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Fie;. 1. Packet traces in the R-q plane. (Case t.n=3, t.n=2.) 

only those quantum numbers n, n being permitted 
for 11·hich . 

l=n+i when J=n+~. (7 .55) 

If the operator JC+JC is to have a zero eigenvalue 
11·hich is highly degenerate, it is clear from Eqs. (7.25) 
and (7 .55) that the coherent internal dynamical be
havior of the particles filling the universe must be 
precisely matched to that of the universe itself in such 
a 11·ay that the derivative dl jdJ is a constant rational 
number over a wide range of values of J. We shall write 

dl / dJ = t:..nj t:..n , (7.56) 

where t:..n and t:..n are relatively prime integers. t:..n and 
t:..n are the spacings between adjacent permitted values 
of the quantum numbers n and n, respectively. An 
immediate consequence of Eq. (7.56) is that the angular 
frequencies (with respect to proper time) of the R 
and q motions are always (within the allowed range of J 
values) commtnsurable. These angular frequencies 
are given by 

w=dE/dl=wdJ/dl, 

w=dE/dJ, 

and, in the allowed range, satisfy 

wl:!.n=wt:..n. 

(7 .57) 

(7 .58) 

(7.59) 

1J se of the angular frequencies permits Eqs. (7 .29) 
to be re-expressed in the form 

a2W 
v--=w, 

a RaJ 

whence (7.43) becomes 

A 2=Fww/VV. 

For later convenience we shall choose 

(7.60) 

(7 .61) 

F= t:..n/21rw=t:..nj21rw. (7.62) 

The normalization constant An in expression (7.53) 
is then given by 

An=(wnt:..nj27rl VnVni) 112 

""[(En+lln-En)/27rl VnVnl] 112
, (7.63) 

the subscripts indicating that the quantized values of 
the quantities to which they are affixed are to be 
employed. No signs have been placed on the V's to cor
respond with the different branches of the W's, because 

motion in a potential is time-reversal invariant, and 
hence IV+I=IV-1, IV+I=IV-1. 

8. A WAVE PACKET FOR THE UNIVERSE. 
THE CONCEPT OF TIME 

We are now in a position to construct a state function 
exhibiting classical behavior. We do this by superposing 
many WKB solutions: 

(8.1) 

the prime indicating that the summation is to be 
carried out only over those quantum nwnbers which 
satisfy condition (7.55). If the a's are carefully chosen, 
'It a will have the form of a "wave packet" which 
traces out a classical trajectory, namely, a generalized 
lissajous figure in the R-q plane. It is easy to see that 
Eq. (7 .31) is just the condition for constructive inter
ference, provided the symbols in the equation are 
understood to denote the "peak" values of the quanti
tities to which thev refer. 

In view of the- commensurability condition (7 .59) 
the lissajous figure is necessarily closed and of finite 
length. 46 A typical set of packet traces is shown in 
Fig. 1 for the case t:..n= 3, t:..n= 2. The action variable 
J is the same for each trace, but the phase constant o 
varies from one to the other. The following facts may 
be inferred from the figures: EacL trace lies within a 
rectangle having sides equal to the full amplitudes of 
the oscillations. Except in the degenerate cases depicted 
·in Figs. 1(a) and 1(e), each trace divides the rectangle 
into 2t:..nt:..n+t:..n+t:..n+1 disjoint regions. Although the 
size and shape of corresponding regions vary from figure 
to figure, each region contains an invariant point which 
is independent of o. These points are shown in the 
figures. 

The degenerate curves are those which have collapsed 
onto the invariant points. They are divided by the 
invariant points into a total of 4t:..nt:..n segments, which 
will be called invariant segments. The invariant seg
ments may be labeled in a systematic fashion, starting, 
say, from the "southwest" corner of the enclosing 
rectangle, by pairs of integers (r,r) satisfying 1 :'S; r:'S; 2t:..n, 
1 ~ r~ 2t:..n. When an invariant segment is used as a 
contour of integration (see Sec. 9) it will be denoted by 
the symbol 2::r,r· [See Fig. 1(c).] Each invariant seg
ment corresponds to a lapse of proper time of amount 
T/4t:..n=T/4t:..n where T and T are the oscillation 
periods. 

46 Degenerate forms of closure [see, for example, Figs 1 (a) and 
1 (e)], in which the packet "moves" back and forth along the same 
curve, are to be understood as included in this statement. Also, if 
successive groups of a's are chosen to vanish in such a way that 
the effective spacing between adjacent quantum numbers becomes a 
multiple of t.n (or t.n), then the packet trace will consist of m 
separately closed Lissajous figures superimposed upon one another. 
Such a trace must be understood as representing a single packet 
which consists of m disconnected parts. Although the following 
discussion can be extended to include such situations, they v.ill, 
for simplicity, be excluded from consideration. 
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A wave packet will be called good if its state function 
has negligible values throughout most of each region 
containing an invariant point. Except at intersection 
points or turning points only one of the branches of 
each of the functions W and W is involved in the 
constructive interference of the WKB functions at 
any one position along a gooq packet trace. Thus, for 
"motion" in a "northeasterlv" direction the relevant 
branches are w+, W+, provided we use the standard 
convention that time increases in the direction of in
creasing Wand W. Continuing around the compass we 
have W+, W- for SE; w-, W- for SW; and w-, W+ for 
KW. The trace is thus divided into branch segments 
having definite quadrant orientations. 

A given branch segment may be intersected by other 
branch segments which further subdivide ~t. The re
sulting pieces will be called simple segments. Each sim
ple segment is intersected by precisely one invariant 
segment, and the two may therefore be labeled by the 
same integers, The branches involved in a given simple 
segment are w+, w ' or w-, w- if r+r is odd and 
w+, W-, or w-, W+ if r+r is even, the choice depend
ing on the direction of "motion." The direction in 
which the packet moves as time increases may be in
dicated by affixing arrows to the packet trace, as in 
Fig. 1(c). If tl;le W's are adjusted so that .5=0 cor
responds to a degenerate trace, then the arrows are 
reversed by changing the sign of .5. 

Proper time itself is defined by 

(8.2) 

where thew's are defined by Eqs. (7 .57) and (7 .58), and 

8= aw ;aJ, 0= aw;aJ. (8.3) 

Classically the angle -variables e and 0 are canonically 
con jugate to - J and J, respective! y, and hence r and ~ 
are canonically conjugate to JC and 3C, respectively. In 
the quantum theory this leads· one to write the com
mutation relations 

[r,JC]=i, c~,3CJ=i. (8.4) 

It is important to remember, however, that the quan
tum r's are not Hermitian. This follows not only from 
their periodic character, which arises from their de
pendence on the 8's [Eqs. (8.2)], but also from. the 
fact that their canonical conjugates, JC and 3C, have 
discrete, "one-sided" spectra, bounded, respectively, 
from above and below. The usual eigenvector proper
ties which hold for Hermitian operators therefore do not 
hold for the r's, an4 we must distinguish between right 
and left eigenvectors. 

Let us introduce the left eigenvectors (r',-r;' I which, in 
virtue of (8.4), may be chosen to satisfy 

We may also introduce the corresponding conjugate 
vectors, denoted by I r',~'), which are right eigenvectors 
of the conjugate operators rt and ~t. Now let CP denote 
the projection operator in_to the physical subspace of 
allowed state vectors. Using -Eqs. (8.5) and the Hamil
tonian constraint (7.1), which may be rewritten in the 
form ' 

(JC+JC)CP= CP(JC+JC) = 0, CP2= CP, (8.6) 

it is easy to see that (r,-r; I CP depends only on the differ
ence r-~. This simple dependence may be recognized 
as a quantum consequence of the classical correlation 

(8.7) 

which follows from (7.31) and (8.2). 
The projection operator CP is conveniently defined in 

terms of the eigenvectors In+!, n+!) of the J's. 
Writing In+!, n+!)= In) whenever the quantum 
numbers are restricted ·as in (7 .55), we have 

CP=:L,.'In)(nl, (8.8) 

provided the normalization (n In')= .5,.,., is assumed. In 
virtue of Eqs. (8.5) we may also write 

(r,~ In)= (w,.t:J.nj27r) 112 exp[ -iE,.(r--r;)]. (8.9) 

The normalization here is chosen so as to maximize the 
orthogonality properties of the vectors ( r,-r; I relative to 
the physical subspace. Noting that w,.f:J.n gives the ap
proximate spacing between adjacent permitted "energy" 
eigenvalues E,., we have 

(r,~ICPJr',~') 
""'(27r)-1 :Ln'(exp{ -iE,.[(r-~)- (r' --r;')]})t:J.E,. 

=~((r--r;)-(r'--r;')). (8.10) 

If the "energy" spectrum were continuous and ranged 
from - oo to oo the function ~ would be the Dirac o. 
In reality it is a function which although divergent at 
the origin does not completely vanish elsewhere. Thus 
the eigenvectors (r,~l are only approximately ortho
normal, a fact which stems from the lack of strict 
Hermiticity of the operators r and -r;. 

Instead of working with the vectors (r,-r;l it is more 
interesting to work with ( r,q I, (R,~ I , and (R,q I , which 
are defined in an obvious fashion. The normalization 
of (R,q I may be fixed by setting 

(R,q In)= 'I' n, (8.11) 

where 'I',. is the function having the WKB approxi
mation (7.53), with A,. given by (7.63). In a similar 
manner the normalization of (r,ql and (R,-r;l may be 
fixed by giving the WKB approximations of their 
inner products with In). We shall choose 

(r,qln)=«<t,.= ((J)nf:l.n/27rl Vn\)1/2 
Xe-iEn•[exp(iWn+)+exp(iWn-)J, (8.12) 

(R,-r; In)= <1>,.= (w,.f:J.n/2-lrl V" I )1i 2[exp( -iW ,.+) 
+exp( -iW ,.-)]exp(iE,.-r;). (8.13) 
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FIG. 2. Packet traces in the (a) R~ and (b) T-q 
planes. (Case ~n=3, D.n=2.) 

Denoting by «~» and <I> arbitrary superpositions of the 
functions «~»n and <I>n, respectively, we may write the 
Schrodinger equations 

iac~»lar=JC(q, -ialaq)«~», 

ia<Pia-c=X(R, -ialaR)<P. 

(8.14) 

(8.15) 

When the function 'lt a of (8.1) has the form of a 
wave packet so also have the corresponding functions 
<Pa and «~»a. The form of the packet trajectory in the 
case of the function <Pa may be determined by notina 
that the condition for constructive interference, which 
establishes the correlation between R and 'C, is 

aw laJ=wt+o, (8.16) 

where o is a phase constant and the other S)mbols 
denote the peak values of the quantities to whiCh they 
referY Differentiation of Eq. (8.16) with respect to -c 
and use of Eqs. (7.28) and (7.60) yields 

dRI ik = V =- (247l' 2R)-1II 

=R-1[R(Rmax-R)] 112 • (8.17) 

The integration of this equation is most easily carried 
out with the aid of an angle if> ,defined by 

ikldif>=R. (8.18) 
This gives 

dif>= [R(Rmax-R)]- 1' 2dR, (8.19) 

which yields the familiar cyclodial trajectory of the 
dust-filled Friedmann universe: 

R= ~RmaxO- cosif>), 

'C=!Rmax(if>-sinif>), 

(8.20) 

(8.21) 

the constants of integration being chosen so that R=O, 
if>=O at 'C=O. We note that by virtue of the boundary 

47 ECJuation (8.16) also follows from (8.2), (8.3), and (8.7). 

condition (7.15) the packet rebounds repeatedly from 
the collapsed state until it ultimately loses its identity 
owing to spreading. Throughout the period of each 
rebound the width of the packet remains at all times 
finite, never suffering infinite compression. Transition 
through collapse thus becomes, in the quantum theory, 
a continuous process-something which cannot be 
achieved within the classical framework. 

Figure 2 shows the curves traced out in the R--c 
and r-q planes by the packet of Fig. 1, and reveals a 
slight complication which was overlooked in the above 
simple analysis. The curves in the two planes appear to 
depict l!.n and l!.n distinct packets, respectively, rather 
than only a single packet. The extra "ghost packets" 
arise because the complete spectra of JC and JC are not 
made use of in the superposition (8.1). Only every 
l!.nth level of JC and every l!.nth level of JC occur. This 
means that r and -c are determined modulo T I l!.n = T I l!.n 
rather than modulo T and T, respectively, and a given 
packet must consequently appear "simultaneously" in 
several places in order to allow for the resulting proper
time ambiguity.4s 

The multiple traces intersect themselves along l!.n-1 
and l!.n-1 phase-invariant lines, respectively. (See 
the indicated lines in the figures.) These lines divide 
the branch segments (which are defined just as for the 
R-q lissajous figures) into simple segments. Each simple 
segment is straddled by a unique pair of points at which 
maximum destructive interference occurs. The pairs 
of points may be connected by arcs intersecting the 
associated siinple segments. These arcs will be denoted 
by l:r,t and l:t,r in the R--c and r-q planes, respectively. 
The pairs of suffixes r, t and t, r have the ranges r= 1, 
2 · · · l!.n; r=1, 2, · · · t.n; t, t= · · ·-2, -1, 0, 1, 2, · · ·, 
and may be used in an obvious manner to identify 
either the simple segments or their associated inter
secting arcs. Examples of arcs and point pairs are 
shown in the figure. 

With the introduction of the three wave functions 
<P, «~», and 'lt we now have at our disposal three distinct 
mathematic;:al windows from which to view the Fried
mann world. From one window the material content of 
the universe is seen as a clock for determining the 
dynamical behavior of the world geometry. From 
another it is the geometry which appears as a clock for 
determining the dynamical behavior of the material 
content. From the third the geometry and the material 
content appear on equal footing, each one correlated 
in a certain manner v:ith the other. 

It is the third window which is to be preferred as 
most accurately revealing the physics of the quantized 
Friedmann model. The variables r and -c, because of 
their lack of Hermiticity, are not rigorously observable 
and hence cannot yield a measure of proper time which 
is valid under all circumstances. It is only with good 

"'!'his has also the consequence that (R,'C! 6' I R','tl """ 
(T,qiCI'IT,q') do not have the form of simple o functions, althou~h 
they diverge at R = R' and q = q'. 
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wave packets that these variables are useful. But ev~n 
with a good packet the description in terms of r and "C 

is not perfect, as is revealed in a striking way by the 
fact that the wave packets <I> a and ~a inevitably spread 
in "time," whereas the packet 'l' a does not. It is for 
this reason that we may say that "time" is only 
a phenomenological concept, useful under certain 
circumstances. 

It is worth remarking that it is not necessary to drag 
in the whole universe to argue for the phenomenological 
character of time. If the principle of general covariance 
is truly valid then the quantum mechanics of every-day 
usage, with its dependence on Schri:idinger equations of 
the form (8.14) or (8.15), is only a phenomenological 
theory. For the only "time" which a covariant theory 
theory can admit is an intrinsic time defined by the 
contents of the universe itself. Any intrinsically defined 
time is necessarily non-Hermitian, which is equivalent 
to saying that there exists no clock, whether geometrical 
or material, which can yield a measure of time which 
is operationally valid under all circumstances, and 
hence there exists no operational method for determin
ing the Schri:idinger state function with arbitrarily high 
precision. This statement also follows directly from the 
uncertainty principle. Because every clock has a "one-· 
sided" energy spectrum, its ultimate accuracy must 
necessarily be inversely proportional to its rest mass. 
When the whole universe is cast in the role of a clock, 
the concept of time can of course be made fantastically 
accurate (at least in principle) because of the enormity 
of the masses and quantum numbers involved. But as 
long as the universe is finite, a theoretical limit to the 
accuracy nevertheless remains. 

9. THE INNER PRODUCT 

We shall now use the results of the two preceding 
sections to show how the definition (5.19) for inner 
products can be rescued from the negative-probability 
disaster, at least in the case of the quantized Friedmann 
model. First we must derive the form which (5.19) 
takes in this model. Consider the following integral: 

j 'P{[X(q, -iajaq)'ltb]*'lta-'ltb*JC(q, -iajaq)'lta}dq, 

where 'lt a and 'l!b are arbitrary complex functions of R 
and the qi, and <p is a real test function. Because of the 
Hermiticity of JC this integral may be rewritten in the 
form 

J 'ltb*[JC(q, -iajaq),<p]'ltadq 

=-ij 'ltb*Vi(q, -iajaq)e(a<pjaqi)'ltadq, (9.1) 

where Vi is defined by (7 .27), but with the replacement 
r, -7 - ia 1 aqi instead of r ;= aw 1 aqi, and where the 

dot in the right-hand integrand indicates that the · 
factor a<pjiJqi is to be inserted between noncJmmuting 
factors in the terms of v• in such a way as to yield the 
commutator on the left. If now the differential operators 
occurring in v• are peeled to the left and right, via inte
grations by parts, iri such a manner that they no longer 
act on a<pjaqi, then the integral takes the form 

-i j (a 'PI aq')('ll/V•-q, a)dq 

=if <pa('lt/Vi'lta)/aq'dq, (9.2) 

... 
where v• denotes the result of the peeling process. 
Because of the arbitrariness of <p it follows that 

[3C(q, -iajaq)'llb]*'lla-'llb*Je(q, -iajaq)'lta 
= a('ltb *Vi'¥ a)/ aqi. (9.3) 

In a similar manner we find 

[X(R, -iajaR)'l!b]*'lla...:.-q,b*X(R, -iajaR)'lta 
' = a('ltb *V'lt a)/ aR, (9.4) 

where in this case we can give an explicit form for V: 

(9.5) 

The analog of (5.19) is now obvious, namely, 

(9.6) 

where ~ is an appropriate surface in the R-q manifold 
and ~; is the directed surface element of its projection 
into q space. From Eqs. (9.3) and (9.4) it follows that 

+-+ 

a('ltb *V'l! a)/ aR+ a('l!b *V''lt a)/ aqi= 0, (9. 7) 

whenever 'l' a and 'l!b are physical state functions satis
fying the Hamiltonian constraint (7.1). Therefore the 
integral (9.6) is independent of~ provided the boundary 
of ~ remains in a region where 'l' a and 'lt b vanish. 

When the coherent dust filling the Friedmann uni
verse is restricted to only one degree of freedom the 
inner product (9.6) reduces to 

where~ is an appropriate contour in the R-q plane. The 
key word here is "appropriate." In analogy with our 
previous treatment of the manifold ;m: of 3-geometrics 
in the general theory, we may view the R~q plane as 
endowed with a natural metric determined by the struc
ture of the functions X and JC. With respect to this 
metric the coordinates R and q are "timelikc" and 
"spacelike", respectively. If the Hamiltonian constraint 



1138 BRYCE S. DEWITT 160 

(7 .1) were an ordinary wave equation we would 
naturally adopt for the contour ~ a "spacelike" line 
such as R =constant. However, just as in the general 
theory, so also here, ·"wave" propagation is not re
stricted to tirnelike directions. Indeed, from the 
lissajous traces of Fig. 1, it is evident that the Fried
mann universe not only executes "timelike" and 
"spacelike" motions with impartiality, but even turns 
around and "moves" backward with respect to the 
"time" coordinate. The distmction between "timelike" 
and "spacelike" clearly does not have the same pervasive 
significance here as it does in ordinary wave theories. 

If we were actually to choose, for ~. a line R= con
stant, we would obtain the useless result ('lrb,'Ya)=O 
for all 'l' a and 'lib. This is because all physically admis
sible state functions have non-negligible values only in 
a finite domain of the R-q plane. Hence any lineR= con
stant can be deformed into a line along which 'l' a and 'lib 
effectively vanish, without affectmg the value of the 
n tegral (9.8) at all. The same is true if~ is a "timelike" 
curve which starts at R=O and goes out to infinity in 
the R-q plane. Since any normalizabile superposition of 
the functions (7 .20) vanishes at R = 0 at least as fast 
as R 7' 4, such a curve can also be deformed into one along 
which 'Ya and 'lib vanish, without affecting (9.8). 

How then shall we choose ~? The answer is to be 
found in the conservation laws (6.13), (7.38), and (9.7). 
From our analysis of the Lissajous traces of Fig. 1 it is 
evident that probability flows m a closed finite circuit 
in the R-q plane. 1: must therefore be a finite curve, 
chosen so as to intersect a unidirectional unit flux of 
probability of each of the two functions 'l' a and 'l' b· 

('lib, 'l' a)= 1 ('¥ b * V'l' adq- 'l' b *V'l! a)dR 
Ir, t 

This means that Eq. (9.8) can be used to define inner 
products only when 'l' a and 'lib both have the form of 
good packets. If they do not have this form or if they 
fall mto the degenerate category depicted in Figs. 
l(a) and l(e), then some other representation must be 
employed. An analogous condition must hold in the 
general theory if Eq. (5.19) is to be valid. Whenever the 
condition is violated the usefulness of Wheeler's "metric 
representation" diminishes. 

It is not difficult to show that Eq. (9.8) indeed yields 
an acceptable value for the inner product under the 
required conditions. The case in which the two packets 
do. not overlap (except at intersections) may be dis
posed of at once; ('lib, 'Ya) then clearly vanishes. The 
only case which need concern us is that m which the 
two packets overlap, at least partially, throughout the 
entire length of their trajectories. The J values at their 
"peaks" then differ negligibly compared to the spread 
of values contamed in their superpositions. As our 
initial contour we shall choose an invariant segment 
~r,r corresponding to the average of the peak J values. 
Since the packets are "good" we know that 'l' a and '1' b 

vanish at its endpoints. Suppose ~r.r intersects a 
NE-SW branch of the lissajous figure formed by the 
packet traces [e.g., the segment ~1.2 shown in Fig. 
1 (c)], and suppose the orientation of both packets is 
the same, say NE, at the point of intersection with 
:Zr,r· Then it is only the W+, W+ branch of each packet 
which interferes constructively along ~r.r· Approxi
mating 'l' a and 'l' b by their WKB forms, keeping only 
those parts which refer to the branch in question, and 
taking note of the inequalities (7 .33), we have 

= Ln,n/ b,.,*a,. r (w,.,w,.~n'~n/411"2 1 v,., VnVn-Ynj) 112{[exp(iW,.,+)Vexp( -iW ,.+)] 
} :Er,r 

where the b's are the coefficients of the expansion of 'l'b: 

(9.10) 

Having dropped the parts of the WKB functions 
which refer to irrelevant branches, we may now extend 
the contour :Zr,r until its ends coincide with points at 
which maximum destructive interference (of the w+, 
W+ parts) occurs [e.g., the points A and Bin Fig. 1(c)]. 
The contour then corresponds to a proper time lapse 
of T /2~n instead of T / 4~n, and spans just tlie right 
number of nodes so that the integral in (9.9) vanishes 
except when n=n'. Expression (9.9) accordingly reduces 

to 

('lib, 'l' a)= Ln1 bn *a,. i [(wn~n/27r j V n I )dq 

- (wn~n/21!" I V n I )dR] 

= L:n' b,. *a,.[(wnT/47r)+(w,.T/47r)], (9.11) 

the positive sign of the final bracketed factor being 
obtained by appropriately orienting the original con
tour ~r,r· The contour ~ 1 • 2 in Fig. 1 (c) shows the correct 
orientation. If the direction of "motion" of the packets 
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is reversed then the orientation of the contour must be where Xn and Xn have the WKB approximations 
reversed. 

For good packets the frequencies Wn and Wn remain 
sensibly constant and equal to the peak frequencies 
21r-jT and 27r/T, respectively, over the range of effective 
n values in the sum (9.11). Therefore we have 

(9.12) 

Xn= (wn/271"1 Vni) 112 

X[exp( -iW n+)+exp( -iW ,.-)], (9.17) 

Xn= (wn/271"\ Vn\) 1/ 2 

X[exp(iWn+)+exp(iWn-)J, (9.18) 

and satisfy the orthonormality conditions 
which is just the accepted definition. By virtue of the 
~ in variance of expression (9.8) the contour may now 1"' * J X *X 

0 

Xn Xn,dR=finn', • n n'dq=oon'· (9.19) 
be displaced to any location, including turning points 
where the WKB approximation breaks down. All that 
is required is that the contour cut each wave packet Thus, we may write 
only once and that ..Y a and ..Yb vanish at its endpoints. 
We therefore have quite generally ..Y(R,q)=Ln' X,.(R)Xn(q) J X.*(q') 

i ('lrb*V'lradq-'lr/V'lradR)::::::Ln' bn*an, (9.13) 

the relation "::::::" tending toward "= " the more 
precisely defined the packets 'lr a and ..y b become. 

If, in the above derivation, the two packets had been 
oppositely oriented then one of the pairs of functions 
W+, W+ in Eq. (9.9) would have had to be changed to 
w-, w-, and the integral, with the extended contour, 
would have vanished even when n=n'. This, however, 
does not conflict with (9.12) since, in the case of op_
positely oriented packets, the relative phases of a .. and 
bn vary so rapidly with n that the inner product vanishes 
anyway. 

An entirely similar analysis can be carried out in the 
R--e and r-q planes. Here the inner product integrals 
are given by 

(<I>b,<I>a) = { ( <I>b *V\:Padr- <I>b *<I>adR), (9.14) 
}:!:,,t 

Xir(R',q')dq'/Xn(R') (9.20a) 

= r:, .. ' X ,.(R) X.(q) 1"' X .. *(R') 

X ..Y(R',q')dR' I X.(q')' (9.20b) 

which express ..Y ev~::rywhere in terms of its values on 
the infinite contour R = R' or on the infinite con tour 
q= q'. 

However, when the function ..Y has the form of a 
wave packet ira, it should be equally possible to de
termine it completely by knowing its value over a 
finite contour 2': which intersects the packet only once. 
That this is indeed the case follows from the fact that 
for a good packet the integral$ 

(9.21) 

(e~»a,e~»b)= { (e~»b*e~»adq-e~»b*Ve~»adr), 
J~t.r 

for all n, may to a high degree of accuracy be replaced 
(9.15) simply by 

which reduce to the familair f<I>b *if>adR and fe~»b *<I>adq 
when the contours are distorted to ~=constant and 
r=constant, respectively. If the ranges of integration 
of the latter integrals are extended to include all per
missible R and q values, the integrals must be divided 
by tJ.n and tJ.n, respectively, because of the presence of 
the ghost packets. 

The above analysis permits us to adopt a new view
point regarding the Cauchy problem for the Hamil
tonian constraint. At the end of Sec. 6 it was conjectured 
that by virtue of the boundary condition (6.31) [(7.15) 
in the present context] the state function will be de
termined everywhere as soon as it is specified on a 
hypersurface. This is very easy to demonstrate in the 
present context, because of the separability of Eq. 
(7.12), which permits the eigenfunctions 'l' .. to be ex
pressed in the product form 

(9.16) 

i (..Y,.*I Vnl'lradq-ir,.*IVnl'lradR). (9.22) 

When the packet is good these integrals have non
negligible values only for a restricted range of n values 
centered on the peak of the packet, over which I V,. I 
varies slowly. Let the peak n values be determined by 
evaluating (9.22) for all n . . Then let the contour be 
extended until its ends reach points of maximum de
structive interference, as determined by the peak n value 
and the slope of the packet branch where it intersects 
2':. 49 Suppose the slope is NE-SW, corresponding to the 
classical functions w+, W+ or w-, W-. Denote by 

49 It may be objected that in choosing 2: to intersect the packet 
along a definite branch we are assuming some preliminary knowl
edge about the approximate "location" of th11 packet. This 
preliminary knowledge, however, differs in no fundamental respect 
from the knowledge which we always have in other more familiar 
instances, e.g., that a given particle is "somewhere in the 
laboratory." 
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'It n ++ and 'It n -- the parts of (the WKB approximation 
to) 'Itn associated with these functions. Now compute 
the integrals 

r ('It~±±* I v n I 'Itadq-'IJI,.±±*I v nl 'IJtadR)' (9.23) )];, 

wliere l:' denotes the extended contour. Of these 
integrals, only those corresponding to the previously 
determined significant n values need be included, and 
of these, in tum, only those corresponding to a definite 
choice of signs (either ++ or --) will have non
negligible values (corresponding to a definite packet 
orientation, which becomes thus determined). The 
values in question are just the amplitudes an of Eq. 
(8.1) and from these the entire state function can be 
constructed. This means that for a good packet the 
Cauchy data are not only the same as for the ordinary 
Schrodinger equation but are also effectively taken from 
a compact domain of "configuration space." 

10. DISCUSSION AND SPECULATION 

Perhaps the most impressive fact which emerges 
from a study of the quantum theory of gravity is that 
it is an extraordinarily economical theory. It gives one 
just exactly what is needed in order to analyze a par
ticular physical situation, but not a bit more. Thus it 
will say nothing about time unless a clock to measure 
time is provided, and it will say nothing about geometry 
unless a device (either a material object, gravitational 
waves, or some other form of radiation) is introduced to 
tell when and where the geometry is to be measured.50 

In view of the strongly operational foundations of 
both the quantum theory and general relativity this 
is to be expected. When the two theories are united the 
result is an operational theory par excellence. 51 

The economy of quantum gravidynamics is also 
revealed in the manner in which the formalism de
termines its own interpretation. We have seen how the 
Hamiltonian constraint, in the case of a finite universe, 
forces us to abandon all use of externally imposed co
ordinates (in particular x0) and to look instead for an 
internal description of the dynamics. We have seen 

6° For details on the quantum theory of measurement in general 
relativity see B. S. DeWitt, in Gravitation: An Introduction to 
Current Research, edited by L. Witten (John Wiley & Sons, Inc., 
New York, 1962). 

61 A notable failure to recognize this fact is to be found in P. W. 
Bridgman, in Albert Einstein, Philosopher Scientist, edited by 
P. A. Schilpp (Tudor Publishing Company, New York, 1949). 
Bridgman's confusion, which is shared by others, stems from the 
fact that in traditional formulations of general relativity one 
speak,s about things, such as curvilinear coordinates, which have 
no operp.tionally defined reality. This confusion would have been 
eliminated had modern coordinate-independent formulations of 
differential geometry been available in 1916. Modern methods 
make it plain that coordinate systems are precisely what general 
relativity is not talking about. General relativity is concerned 
with those attributes of physical reality which are coordinate
independent and is the rock on which present day emphasis on 
in variance principles will ultimately stand or fall. 

how the metric structure of the manifold ~' with its 
frontier of infinite curvature, suggests a natural bound
ary condition for the state functional, which may 
simplify the Cauchy data needed to specify a state. 
And finally, if it be permitted to extend the results of 
our study of the Friedmann model to the general case, 
we have learned how (and when) to use the inner
product definition (5.19), by recognizing that proba
bility flows in closed circuits in~. 

This "principle of self-determination," which per
meates even classical general relativity, has been ele
vated to the rank of a universal principle by Everett, 52 

who applies it to ordinary nonrelativistic quantum 
mechanics. As conventionally formuJated quantum 
mechanics comes in two packages: (1) formalism and 
(2) interpretation based on the existence of a classical 
level. According to Everett, package 2 should be thrown 
away. Quantum mechanics is a theory which attempts 
to describe in mathematical language a situation in 
which chance is not a measure of our ignorance but is 
absolute. Naturally it cannot avoid introducing things 
like wave functions which undergo repeated fission, 
corresponding to the many possible outcomes of a 
given physical process. According to Everett, the wave 
function nonetheless provides a faithful representation 
of reality; it is the universe itself which splits. . 

To those who would immediately object that they 
do not feel themselves split, Everett replies that this 
only confirms the theory; they are not supposed to feel 
it. Everett allows into the theory only those elements 
which are in the formalism itself, namely, a Hilbert 
space, a Hamiltonian, and a Schrodinger equation for 
vectors in the Hilbert space. From these meager begin
nings one can show, by standard arguments, that the 
wave function for a Hamiltonian which, in conventional 
language, would be described as that of a system coupled 
to an apparatus, evolves into a superposition of vectors 
representing the possible values of some system vari
able together with corresponding app·aratus "readings." 
Moreover, if the "measurement" is repeated on a large 
number N of identically prepared systems, the final 
superposition consists of vectors representing various 
possible sets of N values for the system variable to
gether with corresponding apparatus "memory se
quences" which record these values. No interpretation 
of the mathematics is admitted up to this point; in 
particular no a priori interpretation is given to the 
coefficients in the final superposition. 

Now let the coefficients in the final superposition in 
the case of a single system be denoted by Cn. Then the 
coefficients in the case of N systems will be products of 
c's. It can be shown 53 that if one removes from the final 
N-system superposition all those vectors which corre
spond to memory sequences in which the recorded 
values of the system variable fail to meet the standard 

62 H. Everett, III, Rev. Mod. Phys. 29, 454 (1957). 
63 N. R. Graham, Ph.D. thesis, lJniversity of North Carolina 

(unpublished). 
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requirements for a random sequence with probabilities 
I Cn j 2, to any arbitrary, but fixed, degree of accuracy, 
the resulting wave function is indistinguishable from 
the true final wave function in the limit N---+ oo. By 
"indistinguishable" we mean that the difference between 
it and the true wave function has vanishing norm. 

The probability interpretation of quantum mechanics 
thus emerges from the formalism itself. Nonrandom 
memory sequences are "of measure zero" in the final 
superposition, in the limit N ---+oo. Each automaton 
(i.e., apparatus cum memory sequence) in the super
position sees the world obey the familiar quantum laws. 
However, there exists no outside agency which can 
designate which "branch" of the superposition is to be 
regarded as the real world. All are equally real, and yet 
each is unaware of the others. Thus if,. within a given 
branch, an automaton, which has measured a given 
variable without changing it, subsequently checks his 
original observation, his memory sequence will not 
fail him. He will get his original value, and not that of 
some other branch. Moreover, if he communicates with 
another automaton who has simultaneously made the 
same measurement, their results will agree, which means 
that the two are in the same branch and that communi
cation between different branches is impossible. The 
automaton therefore never feels himself split. 

Everett's view of the world is a very natural one to 
adopt in the quantum theory of gravity, where one is 
accustomed to speak without embarassment of the 
"wave function of the universe." It is possible that 
Everett's view is not only natural but essential. For 
example, if the Hamiltonian constraint possesses only a 
single solution, so that the wave function for the uni
verse is unique, then some conception like Everett's 
would appear to be needed in order to assess the physical 
significance of such uniqueness. 5' 

In our discussion of the Friedmann model we as
sumed that the operator X+ 3e possesses a highly 
degenerate zero eigenvalue. How plausible is this as
sumption in the case of the actual world? In the case of 
the Friedmann model we were obliged to match the 
internal dynamics of the dust with that of the universe 
as a whole, with one hundred percent precision. Let us 
try to be a little more realistic. Suppose we replace the 
dust by a gas of noninteracting scalar'bosons, but still 
maintain a rigid spherical geometry. Then we have an 
infinity of degrees of freedom. However, this infinity is 
discrete, because the universe is finite. Moreover, and 
this is important; there can never be more than a finite 
number of field quanta present in the state vector super
position, since the total energy (of the bosons) cannot be 
infinite. This is true even if the bosons are massless, 
since there is no infrared catastrophe in a finite world. 

Now it is not at all difficult to verify that the Hamil
tonian :JC in this case does not match X in any obviously 

•• See J. A. Wheeler, The Monist 47, 40 (1962). 

commensurable way. 5' For each choice of boson quan
tum numbers 3e becomes a well-defined function of ..i., 
and the combination X+ :JC has a well-defined spectrum. 
But only by the sheerest accident does this spectrum 
include zero. All the evidence points to the fact that 
the complete spectrum of X+ :Je, although discrete, is 
everywhere dense on the real line and does not condense 
into a set of finitely separated, infinitely degenerate 
levels. A similar situation holds with vector bosons and 
with fermions, and it seems hardly likely that the switch
ing on of interactions between the particles will change 
tlie picture. 

One might now suggest that we look for a way out of 
this predicament by relaxing the spherical rigidity 
restriction. However, this would merely correspond to 
the introduction of a gas of interacting tensor bosons, 
i.e., gravitons. It therefore appears that the same situ
ation holds even in the general theory and that the 
Hamiltonian constraint of the real world may indeed 
have only one solution. 56 

If the state functional of the universe is unique how 
can we interpret it? In the case of the Friedmann model 
a single eigenfunction ..Y n certainly has no resemblance 
to the real world, nor to any other reasonable world for 
that matter. A plot of j..Y n j 2 in the R-q plane looks like 
a lot of bumps separated from one another by a .rec
tangular array of nodal lines, certainly nothing like a 
lissajous figure. However, suppose an extra term were 
added to the Hamiltonian X+ 3e which had the effect 
of strongly correlating the phase of the coherent particle 
clock with the phase of the universe, without changing 
either the (zero) eigenvalue or the quantum numbers. 
Then the Hamiltonian would no longer be separable and 
the nodal lines of j..Y n j t would no longer form a rec
tangular array. The bumps would instead tend to 
cluster arout;td the Lissajous figure having the favored 
correlation, the figure itself now being somewhat dis
torted due to the correlation interaction, but still 
definitely recognizable. 

The Hamiltonian of the real world is highly non
separable, and there is a high degree of correlation 
among its infinity of modes. This must express itself 
as a kind of "condensation" of the state functional into 
components having many of the attributes of the quasi
classical Friedmann packets. 57 At the same time, be
cause of the size of the universe, we know that the 
"Everett process" must be occurring on a lavish scale: 
The quasiclassical components of the universal state 

66 M. Miketinac (private communication). 
66 The spectrum of X+:IC, or of X itself, can be shifted by the 

introduction of a "cosmological term" in the Einstein Lagrangian. 
If this spectrum is actually everywhere dense then we have the 
amusing result that a minute change in the cosmological constant 
can produce an enormous change in the zero-eigenvalue eigen
vector and hence in the physical properties of the universe. 

67 If the state functional of the universe is unique then it is no 
longer possible or even meaningful to apply the inner-product 
definition (5.19) to the state functional as a whole. However, it 
might still be applied, in some reduced form, to its quasiclassical 
components. 
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functional must be constantly splitting into a stupen
dous number of branches, all moving in parallel without 
interfering with one another except ,insofar as quantum 
Poincare cycle» allow rare anomalies to occur. According 
to the Everett interpretation each branch corresponds 
to a possible world-as-we-actually-see-it. 

We have seen that the Friedmann packets in the R-q 
plane do not ultimately spread in "time"; every expan
sion-contraction cycle is exactly like every other. 
unless some form of leakage to other channels occurs 
(e.g., transitions to different 3-space topologies) the 
same must be true for the real universe (assuming it to 
be closed and finite). In the absence of such channels 
there could be only one expansion-contraction cycle, 
repeated over and over again, like a movie film, through
out eternity, the monotony of which would be alleviated 
only by the infinite variety to be found among the 
multitude of simultaneous parallel worlds all executing 
the cycle together. Such a conclusion holds, in fact, 
regardless of whether the total state functional is 
unique or not. 

A question naturally arises in regard to entropy. 
Within a given branch of the universal state functional 
the entropy would be observed (by appropriate auto
mata) to increase with time. 68 It might be supposed that 
this increase would continue only during the expansion 
phase of the universe and that it would reve~;se itself 
during the contraction phase. This is not so, for one 
has only to r€member that the length of a Poincare 
cycle for even a small part of the universe is vastly 
longer than a rebound cycle, and hence except for a 
vanishingly small fraction of branches the entropy must 
continue to increase (at least locally) until final col
lapse is reached, at which point the very concepts of 
entropy and probability, as well as time itself, cease to 
have meaning. 

However, if the operator Je+ 3C is time-reversal 
invariant, and if its zero eigenvalue is nondegenerate, 
then the state functional of the universe is necessarily 
time-symmetric. This means that for every Everett 
branch in which entropy increases with time there must 
be another in which entropy decreases with time. To an 
observer in the second branch "time" in fact appears to 
be "flowing" in the opposite sense. Because of the ex
treme sensitivity of the state functional to slight changes 
in the operator JC+ 3C (see Ref. 56) it is difficult to say 
how these conclusions ·must be modified if, as recent 
experiments suggest, the real world is not invariant 
under time reversal. However, the world· being as 

&s Each branch corresponds to a pure state in the traditional 
sense. This does not, however, prevent the assignment of an ef
fective entropy to it. For a sufficiently cemplicated system even a 
pure state may be assigned an entropy based on the coarse-grained 
properties of the state rather than on an ensemble average. In 
the classical theory this is illustrated by computer calculations of 
n-body systems. Even though the position and velocity of eve1"3' 
body is known, the system as a whole possesses effective thermo
dynamical properties, the determination of which is in fact the 
goal of the computation. 

complicated (and hence ergodic) as it is, it is still quite 
possible that there is no preferred direction in time. The 
ensemble of Everett branches in which time has a given 
direction of flow may very well be balanced by another 
ensemble in which time flows oppositely, so that reality 
as a whole possesses no over-all time orientation despite 
the absence of time-reversal invariance. 
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APPENDIX A: THE MANIFOLD M 

M is defined as the 6-dimensional space of "points" 
{'y;;} having as covariant and contravariant metric 
tensors, respectively, the expressions 

Giikl= hl/2( yikyil+yilyik_ 2y'J:.YkZ) ' (Al) 

G;;kz=!/'112('Y;k'Y;z+'Ya"Y;k-'Yi/Ykl), (A2) 

satisfying 
(A3) 

Index pairs may, if desired, be mapped into single 
indices according to the rules 

'Yn = 'Y\ '1'22 = 'Y2, 'Yaa = 'Y3, 

'Y2a=2-ll2y4, 'Y31=2-l/2y6, 'Yl2=z-112y6' (A4) 

a;/1 ~ arA, r, Ll= 1· · ·6, etc. 

although this is seldom convenient or necessary. 
By straightforward computation one may verify the 

variational law 

from which it may be inferred that 

G= det(G'ikl) =- ay-1' ___.__ -

(AS) 

(A6) 

where a is some constant. In the special case')';;= 8;; one 
easily finds that the roots of Giikl are -!, 1, 1, 1, 1, 1, 
from which it follows that a=! and that the signature 
of M is -+++++. The components y;; evidently 
are "good" coordinates in M as long as y¢0. 

If the r of Eq. (5. 7) is chosen as a new coordinate then 
the surfaces of constant r have orthogonal trajectories 
whose tangent vectors are proportional to 

arJay,;=trY'i, (A7) 

or, in contravariant form, 

(A8) 

If the orthogonal trajectories themselves are labeled by 
a set of five additional new coordinates rA, A= 1· .. 5, 
then 

y'iih'•;/arA=4r1arfarA=O, (A9) 



160 QUANTUM THEORY OF GRAVITY. I 1143 

and, moreover, a-y ;i/ ar must satisfy 

(AlO) 

From these facts one may infer 

a/'ij a'Ykl ( ar os )-
1 

Giikl_ --= Gijkr--- = -1' 
ar ar 0/'ij a-ykz 

(All) 

a-yiifas=ts-1'Yij, (A12) 

a" ij a-y k 1 o')' ij a" kl 
Giikl---=-y1lz-yik-yil___ (A14) 

as-A arB as-A arB 

from which the metric (5.8) follows. 
The above relations yield the .following useful 

identities: 

tr(y.AatBiay) = oAB, 

tr(yotAioy)=O, 

tr(y-1y,A)=0, 

tr[ "(-1("(,AB-"(,A"(-I"(,B)] = 0 1 

0/'ij as-A 
- --= o;/~-l'Yii'Ykl I 
arA a'Ykl 

tr(y,AM)tr(NarA I oy) 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

=! tr(MN+MN~)-l tr(yM)tr(y-1N) 1 (A20) 

tr(Y.ABM)tr(NosB I ay)+ tr(y,BM)tr[N(asB 1 ay) ,A] 

= -! tr(y,AM)tr(y-1N) 

+! tr(yM)tr(y-1y,Ay-1N) 1 (A21) 

tr[ 'Y.AM(asAI ay)N] 

=t tr(MN~)+t trM trN-i tr(yMy-1N). (A22) 

Equations (A20) and (A22) follow from (A19) 1 while 
Eqs. (A18) and (A21) are obtained from (A17) and 
(A20), respectively, by differentiation. M and N are 
arbitrary 3X3 matrices. 

Using these identities and remembering the cyclic 
in variance of the trace, ·it is easy to compute the 
following: 

G·4 B = tr[ y(otA 1 oy )y(otA/ oy)], 
() AC.(;CB = OA B I 

['ABc= HG AC .B+G BC.A -GAB ,c)= !tr[ y,cy-1 

(A23) 

X ( -y,A"(- 1"(,B-"(,B"(-I"(.A+2y,AB)y-!]' (A24) 

f'AliC=:(}CDf' ABD 

= tr[( -y.Ay- 1y,B+'Y.AB)arc I oy] I (A25) 

RABcD= f'BcD ,A- r ACD .B+ f'BcEf'AEA_ r ACEf'aeD 

= tr[ "(,C"(-l( "(.A"(-I"(,B- "(,B"(-l"(,A) 

XosDioyJ, (A26) 

RABCD""'RABCE(j ED= tr[ y-1y,Dy-1y,cy-1 

X ("(,A"(-1"(,B-"(,B"(-1"(,A)] I (A27) 

RAB=RcABc= -!GAB· (A28) 

The corresponding quantities in the full manifold M are 

r ABC= f' ABC 1 

r AB0= (3/32)sGAB 1 

r AOB = s-1oAB 1 

r Ao0 = rooA= roo0 =0 1 

RABcD=RABcD_ (3/3])({}AcoBD-GBcoAD) 1 

+(all other components vanish) 

RAB=RAB+tGAB=- (9I8)GAB' 

RAo=Roo=0 1 

<6lR= -60s-2.1 

(A29) 

(A30) 

(A31) 

(A32) 

(A33) 

(A34) 

(A35) 

(A36) 

where the index 0 is used for components in the direction 
of the "timelike" coordinate r. 

The geodesic equation in M is obtained directly from 
(A25): 

d2sA dsB dsc 
0=-+rBcA __ 

ds2 d8 ds 

=tr[orA(d2y- d\-~dy)J· (A37) 
oy d82 ds ds 

This reduces. to (5.11) upon multiplication with "(.A 

and use of (A17), (A18), and (A19). 
When one stays within the manifold M it is conven

ient to map the matrices y into matrices a of unit 
determinant: 

(A38) 

In the solution (5.12) of the geodesic equation, y may 
be replaced by a provided M is restricted to have unit 
determinant. To find the geodesic connecting two 
matrices a1 and az, let 8= 0 at a1 and choose M in the 
form 

(A39) 

where 0 is an orthogonal matrix which diagonalizes a1 
and d11' 2 is a diagonal square root of the resulting 
diagonal matrix. Then if 812 is the distance betv.;een 
a1 and az the matrix N satisfies 

Ns12= ln(d~- 1 ' 20azO~dcll 2). 

From the condition trN2= 1 one obtains 

8122 = tr[ln(dl-ll20az0dl-I/Z) ] 2 

= tr[ln(ai-1az)]2 , 

(A40) 

(A41) 

which permits the matrix N itself to be determined. 
The logarithm of a matrix is an effectively unambiguous 
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concept, and the law of cyclic invariance of the trace 
applies to transcendental matrix functions as well as 
to rational functions. The uniqueness of the geodesic 
(5.12) is easily checked by noting that the matrix 0 is 
determined up to a transformation of the form 0' =PO 
where P is either a permutation matrix, if the roots of 
a1 are all distinct, or a more general orthogonal matrix, 
if some of the roots coincide. Such a transformation 
leaves (5.12) invariant. It is also easy to verify that it 
does not matter which of the eight possible square 
roots of d1 is chosen for d1

112. 
The geodesic equations in M take the form 

where 

O= d2s + (3l32)t(ds)2' 
ds2 ds 

d2sA dt8 dsC dsA ds 
0=-+ f"ncA_ -+2s1- --, 

ds2 ds ds ds ds 

(
ds) 2 

_ _ dsA ds8 

- -GAn--. 
ds ds ds 

(A42) 

(A43) 

(A44) 

Differentiating the latter equation and making use of 
(A43) multiplied by G Asds8 Ids, one finds 

d2s 2 ds d!: 
(A45) 

ds 2 s ds ds' 

which may be integrated to yield 

ds a 

ds !;2 
(A46) 

a is an arbitrary integration constant which, without 
loss of generality, may be taken positive. When a~O 
one may write 

(A47) 
ds a ds 

which, in combination with (A43), yields (A37), 
showing that geodesics in M project onto geodesics in M. 

Substitution of (A46) into (A42) yields 

d2!; K2a2 
-+-=0, K= (3132) 112 

1 

ds2 sa 

which integrates to 

ds Ids=± (K2a2s2_ {3) t/2' 

(A48) 

(A49) 

where {:1 is another integration constant. Using the 
metric (5.8) it is easy to verify that standard nor
malization for the affine parameter s is obtained by 
choosing {:1= - 1, 0, or 1 according as the geodesic is 
timelik.e, null, or spacelike. 

Timelike geodesics. In this case !; must always in
crease (or decrease) with s. Therefore choosing the 
positive root in (A49) and the boundary conditions 
s(O) = 0, 8( oo) = 0, one finds, upon setting {:1= -1 and 

integrating Eqs. (A46) and (A49), 

!;(s) = [s(2Ka+s) ]1/2 = -Ka csch(K8), 

1 s 
s(s)=-ln--. 

2K 2Ka+s 

The ranges of the variables are 

(ASO) 

(A51) 

0~ s< oo, - oo ~ 8<0, 0~ s< cc, (A52) 

and one sees that the geodesic strikes the frontier at 
s=O. 

In terms of the matrix y the above results may be 
expressed in the form 

y(s) = [ -K2a csch(K8)]4 1 3M~eNiM, (AS3) 

where N is restricted as in (5.13) and M is now required 
to have unit determinant. 

Null geodesics. In this case it is the constant a which 
serves to fix the scale of s. Setting 2Ka = 1, {:1 = 0, and 
choosing the positive root in (A49), one finds, with 
the boundary condition s(O) = 0, 

t(s) = s1' 2 • (AS4) 

There is no preferred zero point for the arc length 8 
in M. Hence the following integral of Eq. (A46) may 
be chosen: 

8= (2K)-1 lns. 
This yields 

t(s)=e••, 

y(s) = (Ke••)41aM~ eNiM. 

The ranges of the variables are 

(ASS) 

(A56) 

(AS7) 

O~s<oo, -oo ~s<oo, O~!;<oo, (ASS) 

and the geodesic is again seen to hit the frontier. 
Spacelike geodesics. In this cas<: there is a turning 

point at!;= Ka and both roots in (A49) can occur. Setting 
{:1= 1, and choosing the boundary conditions s(O) = 0, 
8(Ka) = 0, with s ~ 0, one finds 

!;(s) = [s(2KO!-s)J1'2= Ka sech(K8), (A59) 

1 s 
s(s)=-ln--, (A60) 

2K 2Ka-s 

y(s)= [K2a sech(Ks)J4'3M~ eN8M. (A61) 

The ranges of the variables are 

O~s~2Ka, -oo~s~oo, O~!;~Ka, (A62) 

and the geodesic is seen to hit the frontier at both ends 
(s=O, 2K). 

Using the above results it is possible to obtain an 
expression for the "distance" to the frontier from any 
point in M. If y is a fixed point and ~ is a contravariant 
vector at y, then 

16 [trX2-i(trX)2]112+(j)1'2 trX 
u(y,0=- 'Y112, 

3 [tr XL!(tr X) 2] 11L (j) 1' 2 tr X (A63) 

X=y-1~, 
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where CT is one-half the square of the distance from -r to 
the frontier along the geodesic which starts from "( in 
the direction of ~- The formula holds as long as tr X 
< (tr X2)Ii2, so that the denominator is positive,_ for 
otherwise the geodesic escapes to infinity in the direc
tion of ~- CT takes on its minimum value, - (16/3)'¥112, 
when the geodesic is a path of pure dilation which 
arrives at the frontier at the' point -r= 0. The condition 
for this is tr X2= l(tr X) 2. 

It should be noted that when the geodesic is not a 
path of pure dilation, it usually strikes _the ~ron~ier a~ a 
point where some of the "(;; become mfimte, m spi:e 
of the fact that 'Y itself vanishes there. To see this, 
first observe that expressions (A53), (A57), and (A61) 
all have the limiting behavior 

y(s)---+ (2K2ae••)413M"'eN•M as s---+- oo. (A64) 

Xext note that in virtue of the conditions (5.13) N 
always has one root which is at least as negative as 
-(!) 1' 2. But 4K/3=(i) 1' 2• Therefore the only way in 
which a blow up of the exponential can be avoided in 
(A64) is for the roots of N to be precisely - (i) 112, 
_ (i)li2, (~)112. Without loss of generality (N) ~ayh~e 
chosen diagonal. The limiting form of "( s m t IS 

special case is then 

-r(O) = M"' 0 (2K2a) 413 0 M. (A65) 
[

{2K2a) 4
/3 0 OJ 

0 0 0 

Since M and a are arbitrary (subject to detM= 1) it 
follows that any singular symmetric matrix having an 
odd number of vanishing roots can be reached by a 
geodesic. Matrices having two vanishing roots can be 
reached (in a finite distance) from nonsingular points, 
but only along paths which suffer infinite absolute 
acceleration at the frontier. 

It is not difficult to obtain an expression for the 
geodesic distance between two matrices "(1 and "(2 in M. 
The geometry of M may be summed up in the compact 
formula 

(A66) 

which follows from (5.8). With the introduction of the 
variables · 

t=!; coshKS, X=!; sinhKS, 

this is converted to 

(A67) 

(A68) 

which is formally just the line element of 2-dimensional 
Minkowski space. Hence 

CT( "(1,"(2)=!(s12) 2=-Ht1- t2)2+!Cx1- X2) 2 

=!(2!;1!;2 coshKS12-!;1L!;22) 

= (16/3) {2('Y1'Y2) 1' 4 cosh[(3/32)1' 2s12] 

-'¥11/2_'¥21/2}' (A69) 
where 812 is given by (A41). 

APPENDIX B: THE MANIFOLDS M"' 3 AND ;m 

In discussing these manifolds it will be convenient 
to use an abbreviated notation which avoids the neces
sity of writing integral signs or excessive numbers of 
indices bearing various numbers of primes. This ~ot'l
tion will be applicable to completely general mamfolds 
and in fact will be used again in the following paper of 
this' series in quite, a different context, thus providing 
additional justification for its introduction here. 

The functions "(;;(x) will be replaced by the symbol 
cp'. More precisely, the symbol 'Y is replace~ by cp,_ and 
the quintuple (i,j,xl,x2,x8) by the smgl; mde~ t. In 
general applications the cp's may constitute either a 
finite discrete set of real numbers or, as here, a set of 
functions or "fields." When the index i has a continuous 
character, the summation convention for repeated 
indices will be understood to include integrations over 
the continuous labels for which it stands. In this 
Appendix no restriction will be placed on the range of 
values which the indices can assume. 

The r,o's are "coordinates" in a manifold (M"' 3 in the 
present case) on which a group acts. Group elemen~s 
will be denoted by barred letters x, fj, etc. and their 
components in some coordinate system in the group 
space will be denoted by a;a, 'fjll, etc. For exa~ple, the 
3-dimensional general COOrdinate transforma~10n gro.up 
may be coordinatized by the functions x•(x) which 
define the coordinate transformation x'---+ xi. In the 
condensed notation the quadruplet (i,xl,x2,x3) gets 
replaced by the single index a. 

The multiplication table of the group defines a set 
of function(al)s Fa[ii,x] satisfying 

pa[ii,x]=(fjx)a. (Bl) 

For example, in the case of the coordinate transforma
tion group this functional bas the form 

pi.x[y,x]=fi'(x(x)). 

By virtue of the group postulates Fa[x,y] also 
satisfies the following fundamental identities: 

pa[x,e]=Fa[e,i]=xa, (B2) 

pa[x,z-1]= pa[z-I,x]= ea, (B3) 

Fa[z,yi] = pa[zy,x], (B4) 

where e is the identity element of the group and a;-r 
denotes the inverse of x. In the case of the coordinate 
transformation group, we have e'(x) = x•. 

Instead of dealing directly with Fa[y,x], one more 
often makes use of a set of auxiliary funcation(al)s, 
together with the structure constants of the group. 
These are defined, respectively, by 

La1{x]= (c5Fa[ii,x]jc5yfl)!i-•, (BS) 

Cafi'Y= (c52Fa[y,x]jc5yflc5x'Y 
_ c52Fa[ii,x]jc5y'Yc5zfl)!-u=•· (B6) 
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In the case of the comdinate transformation group one 
finds Li;{i]= oi;o(i(x),x'), while the structure con
stants are as given in Eq. (4.17). In the case of finite
dimensional Lie groups the functional derivatives in 
(BS) and (B6) become ordinary derivatives. 

By repeatedly differentiating Eqs. (B2), (B3), (B4) 
and setting various elements equal to the identity, a 
number of important relations can be established. 
Among them we cite the following: 

L-lao,,-L-Ia,,o= -cap.,L-lPoL-1-y,' 

Cap,C'-yo+Ca-y,C'op+cao,C'p-y= 0. 

(B7) 

(B8) 

(B9) 

In Eq. (B8) the arguments of the funcation(al)s have 
been suppressed, and differentiation is denoted by a 
comma. L-1ap denotes the matrix inverse to Lap. In the 
case of the coordinate transformation group it is given 
by L-li;{x]= oi;o(x,i(x'))a(i')ja(x'). 

As a result of the action of the group the variables 
cpi suffer a transformation which may be expressed in 
the form 

(B10) 

where the function(al)s <I>i[x,cp] satisfy the identities 

.pi[yi,cp]=<I>i[y,<I>[i,cp ]]. 

Differentiation of (B12) leads to 

<I>i,a[i, cp] =Rip[ <I>[x,cp ]]L-IP a[i], 
where 

(Bll) 

(B12) 

(B13) 

(B14) 

The function(al)s R'a appear in the law of transforma
tion of the cp's under infinitesimal group operations. 
Under the action of a group element having the co
ordinates ea+o~a, where the ofs are infinitesimal, the 
cp's suffer the change 

With these preliminaries out of the way the question 
of imposing a metric on the manifold of cp's may now be 
considered. Let such a metric be denoted by g;;[ cp]. If 
the group is to generate isometric motions in the mani
fold then this metric must satisfy Killing's equation: 

g;;.kocpk+ gk;ocpk,i+ g;kocpk,;= o, (B19) 

with ocp' given by Eq. (B15). It is not difficult to see 
that this equation may be regarded as a group trans
formation law for g;;: 

og;;= g;;,kocpk=- gk;Rka,;o~"- g;kRka,;o~". (B20) 

When the transformation law (B15) 1s linear and 
homogeneous, then 

(B21) 

and Eq. (B20) says simply that g;; must transform 
contragrediently to the Kronecker product cp'cpi. This 
is a necessary and sufficient condition for the isometry 
of group operations. 

Now let dcp' be an arbitrary displacement, with the 
corresponding "arc length" ds given by 

(B22) 

If dcp' happens to be orthogonal to the orbit of cp under 
the group then it satisfies the condition 

(B23) 

and (B22) gives directly the distance between neighbor
ing orbits. In the case of the manifold M"'', with the 
m~tric (6.5) and the transformation law (B16), (B17), 
the condition (B23) takes the form 

(B24) 

More generally, the distance between orbcp and 
orb( cp+dcp) is given by 

(B25) 

(B15) where dcpi is the projection of dcp' normal to the orbit: 

(Functional arguments are again suppressed.) For ex
example, under the infinitesimal coordinate transforma
tion xi= xi+ o~i, the 3-metric 'Yii suffers the change 

D"{;;= f Riik'o~k'd3x', (B16) 

where 

R;;k· =- 'Y;;,ko(x,x')-'Y kJO ,i(x,x')-'Y;ko)x,x') (B17a) 

=-o;k·.;-o;k•.;, (B17b) 

(B18) 

If the transformation laws (BlO) and (B14) are linear 
as in this case, then Ria,;k= 0. (The reader should avoid 
confusing differentiation with respect to the x's in tbe 
explicit notation and functional differentiation with 
respect to the cp's in the compact notation.) 

'Ya-y'Y"~p= o,l' 

'Yap=g;;R'aRip, 

(B26) 

(B27) 

(B28) 

When the indices a, (3 include continuous labels the 
"matrix" 'Y a/3 is tyipcally a differential operator (sum 
of differentiated o functions) and its inverse 'Ya/3 is a 
Green's function. 

Equation (B25) may be written in the alternative 
forms 

where 
(B29) 

(B30) 

gii is the metric in the manifold of orbits, and the ques
tion arises how it transforms under the group. This 
question is answered by establishing the following 
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transformation laws: 

oR'a=R;a,;orpi= (R'fJ.;R'a-C"~fJaR'"')o~l3, (B31) 

(ry a13='Y al3,;orp'=- (c"' 6a'Y"'I3+c"' zf3'Ya"')o~ 3 , (B32) 

o'Ya13:i;'Yaf!,;orp'= (ca6-y'Y"~I3+ci36"''Ya"~)oe. (B33) 

It is straightforward to compute 

ga{J= g;;cp',art'i,l3= 'Y'YaL-I"f aL-!613, 

gaA = gAa= g;;cp',a~P1,A = g;;R'{JL-II3 a<Pi,A, 

gAB= g;;cp',Acpi,B= ff.AB+ gAagal3gi3B, 

(B40) 

(B41) 

(B42) 

Equations (B32) and (B33) are corollaries of (B19), where 
(B27), and (B31), while (B31) itself is a consequence of gAB:= g;;rp',A qY·,B, 

gai3=L"\LfJ6'Y"~3 , ga-yg"'l3= oal3. 

(B43) 

(B44) 
the identity 

R'a,;RifJ-R•fJ,;Ria=R'"'c"~afJ, (B34) 

which is obtained by differentiating Eq. (B13) with 
respect to xfJ, setting x= e, antisymmetrizing in a and {3, 
and making use of (B8). With the aid of (B31) and 
(B33) it is straightforward to show that g;; transforms 
just like g;;. This means that group operations are 
isometrics of g;; just as they are of g;;, and suggests 
that g;; is effectively a function of orbrp alone. In order 
to make this fact explicit a coordinatization of the 
orbit manifold will be introduced. 

This may be accomplished by first introducing a 
hypersurface in the rp manifold, defined by a set of 
simultaneous equations 

(B35) 

where the index a ranges over the same continuum (or 
discrete set, as the case may be) as the group indices .. 
The only requirement on the hypersurface is that it 
intersect the orbit of every point contained in (at least) 
some finite portion of the rp manifold. A coordinate 
system is then laid down in this hypersurface, with the 
coordinates denoted by zA. If the hypersurface has been 
carefully chosen each orbit will intersect it in a single 
point, and the z's at that point may be used to label the 
orbit itself. For example, in the manifold M~' one may 
choose for the equations (B35) the harmonic condition 
('Y 112'Y'i),;=O; then any three of the functions rpAB(?J) 
of Eq. (5.3) may be chosen as the z's. 

A general point in the rp manifold will be reached by 
moving off the hypersurface along (i.e., within) an orbit 
thus: 

(B36) 

where rpo'[z] is the starting point on the hypersurface. 
The group coordinates :ra together with the z's provide 
a new labeling scheme for the points of the rp manifold, 
and the task before us is to compute the metrics g;; 
and g;; in this new coordinate system. For this purpose 
we shall need the relations 

cp',a=RifJ[rp]L-II3a[x], (B37) 

rp',aA = Ri{J,j[ 'P ]cpi,AL-113 a[X], (B38) 

rt'i,al3= Ri"f.{cp ]Ria[cp ]L-1"'a[i]L-13,{x] 
+R•-y[rp]L- 1 "~a,13[x], (B39) 

which are obtained by applying Eq. (B13) to (B36). ·In 
the work which follows the arguments x, cp, and z will 
be suppressed. 

One then readily verifies that the contravariant metric, 
with components ga13, g"'A( = gA"'), gAB, is given by 

g"'l3 = g"'l3+ g"''Y g'YAgAB gB&g4f!' (B45) 

g".A= -g"'l3gi3BgBA, (B46) 

ff.AcgCB= OAB. (B47) 

It is now easy to show that gAB and ff.AB (and hence 
gAB) are independent of the x's. Thus, using (B37) and 
(B38) one finds 

gAB ,a= g;; ,k'Pi,A cpi,Bcpk ,a+ g;;( cp',Aart'i,B+ cp',A cpi,Ba) 

= (g;;,~cR"fJ+g~c;R"I3.i+g,~"l3.i) 
X cp',Art'i,BL-IfJa• (B48) 

But this expression vanishes by virtue of the group 
transformation law for gii [Eq. (B20)]. Since g;; obeys 
the same transformation law it follows that 

(B49) 

That is, the metric ff.AB of the orbit manifold depends 
only on the z's, as was expected. 

For the study of geodesics in the cp manifold the 
following derivatives will also be needed: 

ga{J,"f= g;; .k<P',a<Pi,l3cpk,"f+ g;;( rp',a-y<Pi,{J+ cp',a<P1.13'Y) 
= ga&V,L-1<-y,fJ+ g134D,L-1'-y,a, (BSO) 

gaA,I3 = g;; ,k!pi,art'i,A ~P".I3+ g;;( cp',a13<Pi,A + cp',acpi,A{J) 

= gA"'L'Y6L-14{J,a. (BSl) 

These are obtained with the aid of (B19), (B37), 
(B38), and (B39). 

The geodesic equations in the cp manifold may be 
written in the form 

d2xl3 d2zA · dx13 dx"' d:fl3 dzA 
0= ga~+ gaA-+ r{J"fa- -+2r13Aa--

ds2 ds2 ds ds ds ds 

dzA dzB 
+ r ABa--' (BS2) 

. ds ds 

d2xa d2zB axa d:fl3 axa dzB 
0= gAa--+ gAs--+ r a{jA--+ 2r aBA--

ds2 ds2 ds ds ds ds 

dzB dzc 
+rBcA--, (B53) 

ds ds 

where the r's are the Christoffel symbols. Multiplying 
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(BS2) by gAog6", subtracting the result from (BS3) and using the fact that gAn,a=O, one obtains 

d2zB dzB dz c dX" d,Xf3 
0=gAn-+f'ncA--+~[gaA,{3+gpA,a-ga{3,A-gAog6'Y(ga-y,{3+gp-y,a-ga{3,-y)]--

dJ2 ds ds ds ds 

dX" dzB 
+[gaA,B- gaB,A- gA-yg"Yf3(gaf3,B+ gpn,a- gan,p)]- -+~[(gnag"f3gpA) .c+(gcag"f3gi3A).n- (gnag"f3gpc),A 

ds ds . 

160 

where the f''s are the Christoffel symbols of the orbit manifold. The terms of this equation can be regrouped by 
judicious use of identities such as gan .A= (ga1g"Y 6g6n) ,A and g"Y 6,Ag8f3=-g"Y 6g8f3,A and by replacing derivatives of the 
form gafJ,-y and gaA,/3 by their expressions (BSO), (BS1). The final useful result is 

d2zB dzB dzc dzc( dxf3 dzB) 
O=gAn-+f'ncA--+[(gA-yg'Y"),c-(gc-yg'Y"),A]- gap-+gar-

ds2 ds ds ds ds ds 

( 
dx" dzj( dxf3 dzj dX"( dXi dzB) 

+~g'Y6 ,A g-ya-+g-yn- gop-+goc;- +gA-yg"Yf3D,(L-1'p,a-L-lea,tJ)- go~+gon- . 
ds ds ds ds ds ds ds 

(BSS) 

Now suppose the geodesic intersects one of the orbits orthogonally. The condition for this is [cf. Eq. (B23)] 

(BS6) 
which, when multiplied by L-1 fla, yields 

cJXf3 dzA 
gap-+gaA-=0. 

ds ds 
(B57) 

When this condition is satisfied we have 

dzA dzB dx" dzA dX" dxfl dzA dzB 
gAn- -+2g,.A- -+gap--= gAr--, 

ds ds ds ds ds ds ds ds 
(B58) 

and hence 
(B59) 

so that the arc length in the cp manifold becomes the same as in the orbit manifold. Moreover, by virtue of (BSS) 
it follows that the z's in this case satisfy also the geodesic equation in the orbit manifold, 

d2zB dzB dz 0 

gAs-+f'ncA--=0, 
iJ82 d8 d8 

(B60) 

provided the orthogonality condition (BS7) is maintained along the entire length of the geodesic. But this is an 
immediate consequence of Eqs. (BSO), (B51), and (B52), for by differentiating the left-hand side of (B57) with 
respect to s, one obtains 

d2x13 d2zA dXfl di'Y dxf3 dzA dzA dzB 
gap--+gaA-+ga/l,-y--+(gatJ,A+gaA,/l)--+gaA,r--

ds2 ds2 ds ds ds ds ds ds 

dxP di'Y dxfl dzA ( dxfl dzA' dx"~ 
=!gfJ'Y."--+gtJA,<>--= gop-+gu-)L•,L-1'a·'Y--, 

ds ds ds ds ds ds ds 
(B61) 

which vanishes by virtue of (B57) itself. Therefore, if the geodesic intersects one orbit orthogonally then it intersects 
every orbit in its path orthogonally, and, moreover, it traces out a geodesic curve in the orbit manifold. 
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