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Contrary to the situation which holds for the canonical theory described in the first paper of this series, 
there exists at present no tractable pure operator language on which to base a manifestly covariant quantum 
theory of gnvity. Qne must construct the theory by analogy with conventional S-matrix theory, using 
the c-number language ol Feynman amplitudes when nothing else is available. The present paper undertakes 
this construction. It begins at an elementary level with a treatment of the propagation of small disturbances 
on a classical background. The classical background plays a fundamental role throughout, both as a technical 
instrument for probing the vacuwn (i.e., analyzing virtual processes) and as an arbitrary fiducial point for 
the quantum fluctuations, The problem of the quantized light cone is discussed in a preliminary way, and 
the fonnal structure of the invariance group is displayed, A condensed notation is adopted which permits 
the Yang-MiUs field to be atudied simultaneously with the gravitational field. Generally covariant Green's 
functions are introduced through the imposition of a~variant supplementary conditions on s,mnll dis­
turbances. The transition from the classical to the quantum theory is made via the Poisaon bracket of 
Peierls. Commutation relations for the asymptotic fields are obtained and used to define the incoming 
and outgoing states. Because of the non-Abelian character of the coordinate transformation group, the 
aeparation of propagated disturbances into phytical and nonphyaieal component& requires much greater 
care than in electrodynamics. With the aid of a canonical form for the commutator function, two distinct 
Feynman propagaton relative 'to .n arbitrary background are defined. One of these is manifestly co­
variant, but propagatea nonphysical u well as physical quanta; the other propaga.tea physical quanta only, 
but lacks manifest covariance. The latter is used to define external-line wave functions and non-radb.tively­
eorreeted ampUtudes for scattering. pair production, and pair annihilation by the background field. The 
group invariance of these amplltudes is proved. A fully covariant generalization oi the complete S matrix 
is next proposed, and Feynman'al'« UlttWifff on the group invariance of non-radiative\y-eorreeted n-particle 
amplitudes is derived. The bia; problem of radiative corrections ia then confronted. The re!!Olution of this 
problem is carried out in ateps. The single-loop contribution to the vacuum-to-vacuum amplitude is fint 
computed with the aid of the formal theory of continuous determinants. This contribution is then func­
tionally differentiated to obtain the lowest-order radiative corrections to the K-QU&ntum amplitudes. 
These amplitudes split automatically into Feyrmum baskd&, i.e., sums over tree amplitudes (bare scattering 
amplitudes) in which all external lines are on the mas. shell. Thill guarantees their group invarb.nce. The 
invariance ea.n be made partially manifest by converting from the noncovariant Feynman propagator to 
the covariant one, and this leads to the fonnal appearance of jiet;,Wus guanta which compensate the 
nonphyaical model tarried by the covariant propagator. Although avoidable in principle, these quanta 
necessarily appear whenever mBDifeatly covariant expresaiorul are employed, e.g., in renormalization theory. 
The fictitioua quanta, however, appear only in closed loops and are coupled to real quanta through vertices 
which vanish when the invariance group is Abelian. The vertices are noosymmetric and always occur with 
a unifonn orientation around any lictitlous quantum loop. The problem of splitting radiative corrections 
into Feymnan baskets becomeamore difficult in higher orders. when overlapping loops occur. This probJem 
is approached with the aid of the Feynman functional integral. It is ahown that the "measure" or "volume 
element" for the functional integration plays a fundamental role in the decomposition into Feynman 
baskets and in guaranteeing the invariance of radiative corrections under arbitrary changes in the choice 
of balic field variable&. The ·~measure" has two effects. F1rstly, it removes fJ'OID. all dosed loopa the m~n­
wusal dtains of c:yelically connected advanced (or retarded) Green'a functions, thereby breaking them 
open and enaurin.c that at leaat one segment of every loop is on the mua shell. Seeondly It adds certain non­
local correction& to the ope'rl.tor lield cquatiotlll, which vanish in the claasical limit l -o 0. The question 
arises why these removals and corrections are a.l.wayanegleeted in conventional field theory without apparent 
hann. It is argued that the usual procedure& of renormalization theory automatieaJly take care of them. 
In practice the criteria of locality and unitarity are replaced by analyticity statements and Cutkosky rules. 
It ia virtually certain that the "meaaure'' may be similarly ignored (let equa.l. to unity) in gravity theory, 
and that attention may therefore be eonlined to~ lfitJgNJMS, i.e., diagrams which contain Feynman 
propagators only, with no noncauu.l chains removed. A general aJaorithm Is given for obtaining the 
primary diagrama of arbitrarily high order, including all fictitious quantum loops. and the group invariance 
of the amplitudes thereby delined ia proved. Ealentfal to all theae derivation~ ia the UH of a background 
lield aatisfying the clasalcal ''free" field equatiDns. It is never necessary to employ external sources, and 
hence the weU-known dillicultlel arilins with sowcea in a non-Abelian contm are avoided. 

1. lliTRODUCTION field. Attention was focused on some of the bizarre 

I N the first paper of this series' an attempt was made features of the resulting formalism which arise in the 

to show what happens when canonical Hamiltonian case of finite worlds, and which are of possible cos­
quantization methods are applied to the gravitational mological and even metaphysical significance. Such 

~~~~'==!~~~~:;~ bet~!!~;~ Rev. 160, 1113 (1967). This paper will 

162 1195 



1196 BRYCE S. DEWITT 162 

prosaic questions as the scattering, production, absorp­
tion, and decay of individual quanta were left un­
touched. The main reason for this was that the canonical 
theory does not lend itself easily to the study of these 
questions when physical conditions are such ~t the 
effects of vacuum processes must be taken into account. 
A manifestly covariant forn:talism is needed instead. 
It is the task of the present paper to provide such a 
fonDalism . 

We m~t begin by making clear precisely what is 
meant by "manifest covariance.'' In conventional 
S-matrix theory (whether based on. a conventional 
field theory or not) "manifest covariance'' means 
''manifest Lorentz covariance." In the context of a 
theory of gravity the question arises whether it should 
mean more than this, since the classical theory from 
which ·one starts has 11manifest t'M'Gl covarianc:e." 
Here one must be careful. There is an important 
difference between general covariance and ordinary 
Lorentz cov&riance, and neither one implies the other. 
Lorentz covariance is the expression of a geometrk4l 
symmetry possessed by a system, In gravity theory 
it has relevance at !DOlt to the asymptotic state of 
the fi.eld. As has been emphasized by Fock,1 the word 
"relativity" in the name "general relativity" has con­
notation~ of s~etry which are misleading. Far from 
being more rela.tivistic than special rela.tivity, general 
relativity is in fact less rela.tivistic. For as soon as space. 
time acquires bumps (i.e., curvature) it becomes 
absolute in the sense that one may be able to specify 
position or velocity with respect to these bumps, pro­
vided they are sufticiently pronounced and distin­
guishable from one another. Only when the bumps 
coaleace into regions of uniform curvature doe$ space­
time regain its relativistic properties. It never becomes 
mqre relativistic than fiat space-time, which is char­
acterized by the tO-parameter Poincarf: group. 

The technical method of distinguishing between the 
Poinca.U group and the general coordinate transforma­
tion group is to confine the operations of the latter 
group to a finite (but arbitrary) region of space-time. 
The asymptotic coordinates are then left undisturbed 
by general coordinate transforma.tions, and only the 
operations of the Poincare group (if that is indeed the 
asymptotic symmetry group of the problem) are 
allowed to change them. The general coordinate 
transformation group thus becomes a gtl.#gfl group 
which, although historically an offspring of the Poin­
car6 group and the equivalence principle, plays techni­
cally the rather obscure role of providing the analytic 
means by which the Einstein equations can be ob­
tained from a variational principle and their essential 
locality displayed.1 

~:r~rf:i~9{g~~r•-•er~ (PergaDI-

• The COD tent of the Einstein equatioos can be apre&scd iD an 
intrinsic coordinate-independent form Ollly at the coat of innodo.c­
ins DOOloct.llltructures. (See, for eumple, Ref. 32). It Ct.D be 

This, however, is not the whole story, for the general 
coordinate transformation group still bas, even as a 
gauge group, profound physical implications. Some of 
these we have already encountered in I, and some we 
shall encounter in the present paper. Others will appear 
in the final paper of this series, which is to be devoted 
to applications of the covariant theory. If it were not 
for these implications there would be little interest in 
pushing our investigations further, for there is no 
likelihood that sucli ~~~· processes as graviton­
gravitoD scattering or curvature induced vacuum 
polarization will ever be experimentally observed.t The 
real reason for studying the quantum theory of gravity 
is that by uniting quantum theory and general relativity 
one may discover, at no cost in the way of new axioms 
of physics, some previously unknown consequen~ of 
general coordinate invariance, which suggest new in­
tereoting thinp that can be doiu: with quantum field 
theory as a ·whole. 

Our problem will be to develop a formalism which 
makes manifest the extent to which general covariance 
permeates the theory. This will be accomplished by 
introducing, instead of a fiat background, an adjust­
able c-number background metric. Use of such a 
metric bas the following fundamental technical advan­
tages: (1) It facilitates the introduction of particle 
propagators which are generally covariant rather than 
merely Lorentz-covariant. (2) It reduces the study of 
radiative corrections to the study of the vacuum. (3) It 
makes possible the generally covariant isolation of 
divergences, which is essential to any renormalization 
program. (4) It renders theorems analogous to the 
Ward identitY almost trivial. (S) It makes possible, 
in principle, the extension of the theory of radiative 
corrections to worlds for which space-time is not 
asymptotically tla.t and which may even be dosed 
and finite. These advantages are typical of what we 
shall mean by the phrase 11manifest covariance." Use 
of the phrase, however, is not to be understood as 
implying that the simple trick of introducing a variable 
background metric makes nerylhUsg obvious. The 
generally covariant propagators will not be unique 
but will be choosable in various ways, analogous to 
the gauge choices in quantum electrodynamics, and 
we sh&ll have to undertake a separate investigation, 
just as in quantum electrodYnamics, to verify that 
the choice is irrelevant. This investigation turns out 
to be much more complicated than in the case of 
quantum electrodynamics. 

Of the five advantages listed above as stemming 
from the use of a variable background metric only 
the first two will appear in the present paper. The third 

argued [.seeS. Weinberg, Plays. Rev. 138, B988 (1965)] that the 
general i:oortlinatc t~ansformation group is simply a constquence 
of the 11tr0 rest ID&II of the·sravitation&lfield and its lo11J-range 
"""""'M, 

4 Although one lllfght hope for some very indirect cosmoJogical 
evldenceforsw:hproceaaaa. 
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and fourth will be demonstrated in the following paper 
of tbi!l series, while the fifth remains a program for 
the future. It is not out of place here, however, to 
speculate briefiy on this ultimate program. As long 
as the conventional S matrix il our chief concern it is 
"appropria.te to choose a background metric w~ich ~ 
asymptotically fiat. We shall l!lte that Lorentz mvan­
ance of the S matrix then followS almost trivially from 
the formalism, in the limit in which the background 
metric becomes everywhere Minkowskian. Now it is 
obvious that scattering procwes are also possible in 
&n infinite world which is not asymptotically fia.t. In 
such a world it should be possible to construct a 
generalized S matrix in which the conventional plane­
wave momentum eigenfunctions are replaced by wa.ve 
functions appropriate to the altered asymptotic 
geometry. The asymptotic geometry itself would be 
fixed by choosing the background metric appropria.tely. 

In a closed world no rigorous S m&trix exists. The 
continuum of scattering states is replaced by a re~ 
of discrete quantization, and, as we have seen in I, 
the wave function of the universe may even be unique. 
It may be conjectured that the formalism most ap­
propriate to this case is obtained by choosing the back­
ground metric to be not a ' number but rather an 
operator depending on a small number (e.g., one) of 
quantum variables similar to the operator R represent­
ing the radius of the Friedmann universe studied in I. 
These variables would'be quantized by the canonical 
method, while the full q-number metric would continue 
tb be treated by manifestly covariant method!. (Con­
ditions of constraint would, of course, have to be im­
posed on the latter metric to take ~to account the fact 
that some of its degrees of freedom have been trans­

'ferred to the background metric.) The resulting 
simultaneous use of both the canonical and covariant 
theories might help to reveal: the relationship between 
them. 

As bas been remarked in I, no rigorous mathematical 
link bas thus far been established between the canODical 
and covariant theories. In the case of infinite worlds 
it is believed that the two theories are merely two 
versions of the same theory, expressed in diffcnnt 
languages, but no one knows for sure. The analysis of 
radiative corrections has turned out to be of such 
intricacy that the covariant theory has had to be 
developed completely within its own framework and 
independently of the canonical theory. Although the 
structure of the covariant theory is suggested by the 
formalism of field operaton, and hence maintains a few 
points of contact with conventional field theory, the 
language of operators is dropped at a certain key stage 
and c-number criteria are thenceforth exclusively em­
ployed to maintain internal consistency. It turns out 
that the language of operators is a peculiarly unwieldy 
one in which to discuss questions of consistency when 
the invariance group of the theory is non-Abelian~ 

The language of graphs and the S matrix is much more 
direct. 

The latter language, embracing as it does many dif· 
ferent particle theories at once, is also much less 
dependent on the detailed Lagrangian structure of the 
field theory on which it is based. It assumes that virtual 
processes may be described by an infinite set of basic 
diagrams, the combinatorial properties of which are the 
same for all field theories. In working out the details 
of how tbls language is to be extended to the non­
Abelian case, we have attempted to develop it with!n 
as broad a framework as possible. Every theorem m 
this paper will therefore apply not only to the gravita­
tional field but also to the Yang-Mills field1 which, 
like the gravitational field, possesses a non-Abelian 
invariance group. 1 

Section 2 begins with the introduction of a notation 
which is sufficiently general to embrace all boson field 
theories and at the same time condensed enough to 
reduce the highly complex analysis of subsequent sec­
tiDns to mana.geable proportions. A table is included 
to facilitate comparison of the condensed notation with 
the detailed forms which the various symbols take in 
the case of the Yang-Mills and gravitational fields. 
The notation is particularly useful in dealing with the 
second functional derivative of the action, which plays 
the role of the differential operator governing the prop­
agation of infinitesimal disturbances on an arbitrary 
background field. It is also useful in dealing with the 
higher functional derivatives, which are the bare verta 
functions of the theory. The problem of the quantized 
light cone is discussed in a preliminary way in Sec. 3, 
and its relationship to the 11nonrenormalizability" of 
the theory is noted. Attention is. called to the various 
roles of the b&ckground metric, one of which is to define 
the concepts of "past" and "future." Green's theorem 
for an arbitrary differential operator is then derived. 

Section 4 introduces a notation for the basic struc­
tures governing the action of the invariance group on 
the field variables. The relationship between manifest 
covariance and linearity of the group transformation 
laws ia emphasized. In Sec. S it is pointed out that the 
infinitesimal disturbances themselves are determined 
only modulo an Abelian transformation group. This 
group, which is the tangent group of the full group, 
affects only the field variables but not physical ob­
servable&. The latter are necessarily group-invariant. 
Infinitesimal disturbances satisfying retarded or ad-
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vanced boundary conditions can be computed with the 
aid of corresponding Green's functions provided sup­
plementary conditions are imposed. For convenience 
these supplementary conditions are chosen in a mani­
festly covariant way, but their essential arbitrariness 
is emphasized. 

Use of the covariant Green's functions in connection 
with Cauchy data for infinitesimal disturbances is 
discussed in Sec. 6, and the fundamental reciprocity 
relations of propagator theory are established. Transi­
tion from the classical to the quantum theory is made 
via the Poisson bracket of Peierls (see Ref. 20), which 
is determined solely by the behavior of infinitesimal 
disturbances. The reciprocity relations are used to show 
that Peierls' Poisson bracket satisfies all the usual 
identities. Section 7 introduces the important concept 
of the asymptotic fields, which obey the field equations 
of the linearized theory. From the asymptotic fields 
one can construct asymptotic invariants, which may 
be used to characterize completely the physical state 
of the field. The asymptotic invariants are conditional 
invariants, i.e., invariants modulo the field equations. 
It is emphasized that their commutators (i.e., Poisson 
brackets) are nonetheless well defined. A direct proof is 
given that the asymptotic invariants satisfy the com­
mutation relations of the linearized theory, a result 
which is nontrivial when a group is present. This result 
is used in Sec. 8 to construct the creation and annihila­
tion operators for real (i.e., physical) quanta in the 
remote past aD.d future. The detailed structures of the 
asymptotic Yang-Mills and gravitational fields must 
be investigated separately, but a condensed notation 
(for the asymptotic wave functions) is again introduced, 
which embraces both fields at once and emphasizes 
their similarities. A table is included to facilitate the 
comparison. The quanta of both fields are transverse 
and differ only in spin. States are labeled by heiicity, 
which is readily shown to be Lorentz-invariant. 

Continuing the uniform treatment of the two fields, 
Sec. 9 shows that the asymptotic GQPlffiUtator functions 
of both can be expressed in a standard canonical form. 
A special notation is introduced for the projection of 
the canonical form into the physical subspace. With 
the aid of this projection two distinct Feynman prop­
agators are defined relative to an arbitrary back­
ground field. Both serve to describe the propagation of 
field quanta in nonasymptotic regions as well as at 
infinity. One is manifestly covariant but propagates 
nonphysical as well as physical quanta i the other prop­
agates physical quanta only but lacks manifest 
covariance. The latter is used in Sec. 10 to define the 
external line wave functions which enter into the ulti­
mate definition of the S matrix. These functions serve. 
to generalize the asymptotic wave functions lo the 
case in which an arbitrary background field is present. 
They satisfy a number of important relations following 
from a fundamental lemma which is proved in this 

section. The lemma is used again in Sec. 11 to prove 
that the non-radiatively-corrected amplitudes for scat­
tering, pair production and pair annihilation by the 
background field are group-invariant. "Group in­
variance" here implies invariance under group trans­
formations of the background field, under gauge changes 
of the propagators, and under radiation gauge changes 
in the asymptotic wave functions. The amplitudes are 
also shown to satisfy a set of relations which are the 
relativistic generalizations of the well known optical 
theorem for nonrelativistic scattering. 

Construction of the full S matrix of the theory is 
begun in Sec. 12. The field operators are separated into 
two parts, a classical background satisfying the classical 
field equations, and a quantum remainder. Vacuum 
states associated with the remote past and future are 
defined relative to the background field. Vacuum matrix 
elemeD.ts of chronological products are constructed by 
varying the vacuum-to-vacuum amplitude with re­
spect to the background field. It turns out that all 
physical amplitudes can be obtained in this way 
despite the fact that the variations in the background 
field are subject to the constraint that the classical 
field equations never be violated. The well-known 
difficulties arising with the use of external sources in 
a non-Abelian context are thus avoided. When no in­
variance group is present the vacuum matrix elements 
of chronological products are expressible in terms of 
functions having the combinatorial structure of tree 
diagrams. Use of these functions constitutes an essential 
part of the program for constructing the S matrix as 
given in this paper. Since these functions are initially 
defined only in the absence of an invariance group, 
however, we are at this point forced to abandon the 
strict operator formalism. Section 13 displays the struc­
ture of the S matrix and its unitarily conditions when 
no invariance group is present. Section 14 then begins 
the long and intricate task of generalizing this struc­
ture to the case in which a group is present. Aside 
from an invariance lemma which is used to suggest the 
desired generalization, the important proof of this sec­
tion is the tru ~~uor~. The tree theorem says that the 
lowest-order (i.e., non-radiatively corrected) contribu­
tions to any scattering process can always be calculated 
by elementary methods, using any choice of gauge for 
the propagators of the internal lines and any choice of 
gauge for the external-line wave functions. The result 
will be independent of the gauge choices provided all 
the tree diagrams contributing to the given process 
are summed together. 

There remains only the question of the vacuum-to­
vacuum amplitude itself. Since all radiative correc­
tions can be obtained by functionally differentiating 
this amplitude with respect to the background field, 
a proof of its group invariance would complete the 
proof of the invariance of the entire S matrix. The real 
problem, however, is to comlrflct the amplitude, and the 



162 QUANTUM THEORY OF GRAVITY. II 1199 

invariance ·criterion must therefore be used as a guide 
rather than as an a posteriori consistency check.. 
Section 15 pauses briefiy to review the question of 
Lorentz invariance, to point out that the theory should 
also be invariant under changes in the specific variables 
with which one works, and to comment upon the utility 
of using c-number language exclusively. Section 16 
then plunges into the main problem. The single-loop 
contribution to the vacuum-to-vacuum amplitude is 
computed with the aid of the formal theory of con­
tinuous detenninants, and various alternative forms for 
it are given. There is no ambiguity about this contribu­
tion, and its group invariance is readily demonstrated. 
This contribution is functionally differentiated in 
Sec. 17 to yield the lowest-order contribution to 
single quantum production by the background field. 
The latter splits into two parts, one involving the 
covariant propagator for normal quanta and the other 
involving the covariant propagator for a set of"fo;litiotu 
qvanta which comp'ensate the nonphysical quanta that 
the first propagator also carries. The fictitious quanta 
are coupled to real quanta through asymmetric vertices 
which vanish when the invariance group is Abelian. 
With the aid of the fundamental lemma of Sec. 10 and 
a collection of new identities it is shown that the 
fictitious quanta can be formally avoided by replacing 
the covariant propagator by the noncovariant one 
which carries physical quanta only. The covariant 
propagators, however, are needed for the practical 
implementation of any renormaliza.tion program. 

The lowest-order radiative corrections to the 
n-quantum amplitudes are analyzed in Sec. 18. These 
amplitudes split automatically into F~ynmcn baskds, 
i.e., sums oVer tree amplitudes (lowest-order scattering 
amplitudes) in which all external lines are on the masa 
shelL The tree theorem then guarantees their group 
invariance. This invariance can be made' partially 
manifest by converting from the noncovariant prop­
agator to the covariant one, and the fictitious quanta 
again make their appearance. 

The problem of splitting the radiative corrections 
into Feyrunan baskets becomes more difficult in higher 
orders, when overlapping loops occur. This problem 
is approached in Sec. 19 with the aid of the Feynman 
functional integral. When no invariance group is present 
it is shown that the "measure" or "volume element" for 
the functional integration plays a fundamental role in 
the decomposition into Feynman baskets and in 
guaranteeing the invariance of the vacuum-to-vacuum 
amplitude under arbitrary changes in the choice of 
basic field variables. The "measure" has two effects. 
Firstly, it removes from all closed loops the noncCJUSal 
chains of cyclically connected advanced (or retarded) 
Green's functions, thereby breaking them open and in­
suring that at least one segment of every loop is on 
the mass shell Secondly, it adds certain nonlocal cor­
rections to the operator field equationa, which vanish 

in the classical limit A-+ 0. The question arises why 
these removals and corrections are always neglected in 
conventional field theory without apparent harm. It is 
argued that the usual procedures of renormalization 
theory automatically take care of them and that in 
practice the criteria. of locality and unitarity are re­
placed by analyticity statements and Cutkosky rules 
(see Ref. 52). A detailed investigation of these cor­
rections when a group is present is undertaken in Sec. 
20. The two-loop Feynman-basket decomposition of 
the preceding section is appropriately generalized and the 
result is reexpressed in terms of covariant propagators, 
including the fictitious quanta. It turns out that the total 
two-loop amplitude is obtainable from a set of covariant 
primary diagrGms (containing Feynman propagators 
only, and hence off-mass-shell contributions in all 
lines) by a process of removing noncausal chains and 
adding nonlocal corrections, which is completely 
analogous to that of the no-group case .. Moreover, the 
primary diagrams, taken together, are group-invariant 
as they stand, indepe1UiMtly of th~ tr~~ th~em. This 
suggests that even when a group is present the non­
causal chains and nonlocal corrections may be neglected 
as in conventional field theory. The problem therefore 
becomes one of finding a general algorithm for obtain­
ing the primary diagrams of arbitrarily high order, in­
cluding all fictitious quantum loops. The remainder of 
Sec. 20 is devoted to the construction of such an algo­
rithm. The generator for the algorithm is a Feynman 
functional integral for the vacuum-to-vacuum ampli­
tude, which includes fields representing the fictitious 
quanta. The group invariance of this integral is explicitly 
demonstrated, and the fictitious quanta are shown 
formally to obey Fermi statistics despite their integral 
spin. No physical criteria are violated, however, since 
the fictitious quanta never occur outside of closed loops. 
Finally, the rules for inserting external lines into the 
primary vacuum diagrams are given, and the asym­
metric vertices contained in the fictitious quantum 
loops are shown to have a uniform orientation around 
each loop. 

2. ~OTATION. INFINITESIMAL DISTURBANCES. 
BARE VERTEX FUNCTIONS 

A quantum field theory begins with the selection of 
an action functional S. I! the theory is local this func­
tional is expressible in the form 

s-J-, dx=<h!'dx'dz'dr. (2.1} 

where .C-the Lagrangian (density)-is a function of 
the dynamical variables and a finite number of their 
space-time derivatives at a single point. Various criteria 
such as covariance, self-consistency of the field equa­
tions, the existence of the vacuum as a state of lowest 
energy, and positive definiteness of the quantum· 
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metbanical Hilbert space in practice drastically limit 
the possible choices for £, However, many diffr-rent 
choices exist for the Lagrangian of a given field. Thus 
it is always possible to add a trivial divergence to the 
Lagrangian without changing the field equations at all. 
Moreover, the field variables may be replaced by 
arbitrary functions of themselves; this replaceo the field 
equations by linear combinations of themselves. Finally, 
even the number of field Variables is not unique; for 
example, alternative Lagrangians may be found leading 
to field equations which express soml2' of the variables in 
terms of derivatives of others. What is important is that 
the choice of Lagrangian is basically irrelevant to the 
development of the theory of a given field and should 
be determined only by convenience. The quantum 
theory of a given field must be constructed in such a 
way that it is invariant under changes in the mode of 
description of the field. 

It will prove convenient in what follows to adopt a 
highly condensed notation. The field variables (assumed 
here to be real) will be denoted by <P'.' and commas 
followed by indices from the middle of the Greek 
alphabet will be used to denote differentiation with re­
spect to the space-time coordinates. The first part of 
the Greek alphabet will be reserved for group indices, 
to be introduced presently. Primes will be used to 
distinguish different points of space-time; they wi!l also 
appear on associated indices, or on field symbols them­
selves, when it is desired to avoid cumber.;;ome explicit 
appearances of the x's. In most cases, however, the 
primes will be simply omitted. This corresponds to 
making the indices i, j, etc. do double duty as discrete 
labels for field components and as continuous labels over 
the points of space-time. That is, an index such as i will 
really stand for the quintuple (i, x0, x1, :t2, xa) and the 
summation convention for repeated indices will be 
extended to include integrations over the x's. The 
significance of the indices thus becomes almost purely 
combinatorial. When this notation is employed it is 
necessary to remember that expressions such as M;J are 
really elements of continuous matrices and that the 
symbol [Jii involves a 4-dimensional 8 function. 

For most purposes the form of the field equations is 
more important than the value of the action functional. 
Therefore, the domain of integration in (2.1) is un­
important; when otherwise unspecified it is to be under-

Suppose the form Of the action functional suffers the 
following change: 

(2.3) 

where tis an infinitesimal constant. Such a change may 
be thought of as being brought about by weak coupling 
to some external agent. The coupling produces an in­
finitesimal disturbance 81"' in the field, which satisfies 
the linear inhomogeneous equation 

(2.4) 

That is, I"'+O<P' satisfies the field equations of the 
system S+fA if <P' satisfies those of the systemS. The 
undisturbed field I"; may be regarded as a background 
fiel:l. upon which the disturbance lirp' propagates. The 
concept of the background field proves to be a useful 
one in the covariant theory, and will occur repeatedly 
in what follows. 

For local theories the quantity 5.;1 has the form of a 
linear combination of li functions and derivatives of fJ 
functions, with functions of the field variables and their 
derivatives as coefficients. In Eq. (2.4) 5.;1 therefore 
plays the role of a linear differential operator with 
variable coefficients. The reader will find it useful to 
consult Table I, which lists the explicit forms which this 
and various other abstract symbols of the general 
formalism take in the cases of the Yang-Mills field and 
the gravitational field, respectively. 

In the case of linear theories S .ij corresponds to a 
linear differential operator with constant coefficients, 
and the higher functional derivatives 5,;,k, etc., vanish. 
In nonlinear theories the higher functional deriwtives 
are known as bare vertex functions. They describe the 
basic interactions between finite dbturbanccs, the prop­
agation of which, as will be seen later, provides a direct 
classical model for the quantum 5 matrix. 

It is frequently convenient to introduce a further con­
densation of notation, namely to make the replacement 

(2.5) 

and to drop the indices altogether. Equations (2.2) 
and (2.4) are then replaced by 

(2.6) 

stood as being large enough to embrace all points at and 
which it may be desired to perform functional dif. 
ferentiations. Functional differentiation with respect to (2.7) 

the field variables will be denoted by a comma followed 
by one or more Latin indice5. Thus the field equations 
will be expressed in the symbolic form 

(2.J) 

'In this paper no restrktion is imposed on the range of Latin 
indices. Other conventions, to the e.xctent they overlap, are the 
same as in I 

respectively. If the basic field variables are properly 
chosen the number of nonvanishing bare vertex func· 
tions is finite in the case of both the Yang-Mills and 
gravitational fields. Thus, for the Yang-Mills field we 
have 5,.=0 for n>4 when the field variables are chosen 
as in Table I, while for the gravitational field we have 
5,=0 for n>9 if the quantities r,o~·~g~mg~·-11~' are 
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TABLE I. Expressions for the Yang-Mills and gravitational fields corresponding to quantities appearing in the abstract formalism. 

Abstract 
symbol or 
equation 

o .. s,, 

s .• 

... 

R'. 

Ri,.,j 

..... 

Fq 

Corresponding expression for the Yang-Mills field 

l'he indices p, • are raised and lowered by means of the 

~~The~~~~:!~~;:·;~~~~~~~)~ ~~v:Se!n. 
of the Cartan metric, 

and its inverse .,..,,.,Tfa';,1.Zife1s'tructure constants 
of a compact n-dlmensional semi-simple Lie group, and 
the constant c1 is chosen so that det(-y.,) = 1. 

O•t.S/IA.·~•-F_..;,. 

a«~r·'•IJ"',I,.•&(%,r) 

The infinitesimal group parameters are functions IJ('"(::c) 
which aSIIign to each point ::c a corresponding 
infinitesimal transformation of the generating I.ie 
group. Under inner automorphisms they transform 
according to the adjoint representation of the full group. 

R•,.,.•-a•,., •• a•,.•J•,t~~(%,%'} 

aA·.=- -a~·,.- -aro .• -~..,.A.,.~at­
Semicolons denote invariant differentiation. A 6eld 

quantity ., which has the group transformation law 
&q~=G,..pae-, 

where the G .. are the generators of a matrix reoresenta­
tion of the generating Lie group, is defined to ha.ve the 
invariant derivative 

.,,,..,,,.+G.A•,.,.. 
Invariant differentiation leaves transformation properties 
intact. It hu the commutation law 

"'""-""'"•-GJI'""""' 
p.. .. , .... o 

This identity is a consequence of the antisymmetry of 
F"•· and of the structure constants ''d· P•~· transforlltB 
according to the adjoint representation of the group and 
abo su.isDea the cyclic identity 

F•,..,.+F•,..,,.+F-.,.,.•0. 

aR•,.,.faA'", ... ,.,-ra.•a(%,%')1l(%,%'')•c-1.a',.a•,.., ..... 
c-, . .,. .... ,.,,a(:,%')a(:,%"') 

'Y ... , ••• __ ,.,.,. .. 

P,.,.re.a.,., •• 
;:., .• -a.,. 

;:-'•''•-a.,. 
p_._ .•.• ,_,., .• ·,,•+2c•.,F'•.i.•1.•' 

Corresponding expression for the gravitational field 

<111"""'111"-'IP•ii',II""0,1,2,J; .p,.. .. .,.,. 

OeiS/Ii<P••-g11'(R,..-i&""'R). 

l,..~·•'•i(IS,. .. I.•+&. .. I~·)3(%,::C'}. 

f'~'t,~')~;::-r,:~c,~..-aA .• ···, •. > 

;Jr..;.~;; ... _iRa-·~· 
- ,,..R•"a,~····) 

The infinitesimal group parameters are the functions 
liE'(%) appearing in the infinitesimal coordinate 
transformation ~-.v+a£•. Under inner automorphisms 
they lransform as contravariant vectort.. Note that 
group and coordinate indices coincide in the case of the 
general coordinate transformation group. 

R-·•-a,....,.-~..o., .. , "~··•g,..a(%,:.:') 

,.,,..=-a~:.,.- a£.,.=- -, •• ,.llf"-g • .aro .• -,~.ae• .. 
Semicolons denote covariant differentiation. A field 

quantity op which ha.s the group transformation law 
,..,,. -.., .• ae•+Go~op&e• .• • -..,, • .s~·+G·~""£•,. 

where the G•. are the generaton of a matrix represent&· 
tion of the linear group, is defined to have the covariant 
derivative 

..,,~- .... +G·.r .. •..,. 
Covariant differentiation adds one covariant index. It 
has the commutation law 

.,,..,-.,,_.•-G•,R-•q~. 

-2[t111(R,..-Jg••R)] .• ..,0. 
This identity results from contracting the Bianehi 

idm#ty 
R,..,•,.+R,.,•,.+R •• ?,,,..O 

which can be verified by straightforward computation 
using the fact that the Rk,anra temo, R • .,• trans­
forms as a mbted tensor of the fourth rank. 

T""'•'• -tgtll(a .. •••• -tt,..al'•'•') 

p,.....1u 1(a,...,.•+R.•a,,.) 

:r-~~ .. --, .. ·,..-111 

F-'··-~r;;~~;.:~~.~~i:~:a!~'-~~R.la ... ·•· 
+2R,•a.l•'•'-g,.,.R .. a·····-m,l···· 
+ir~a.••'•') 

The Jut five terms inside the parentheses may be omitted 
when the field equations are satisfied. 
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chosen as the basic field variables.8 With the conven­
tional choice of Table I the number of nonva.nishing 
gravitational vertex functions is infinite. 

For a local theory a typical term in S., involves the 
product of n-1 0 functions or derivatives of 0 functions. 
In momentum space with a constant (e.g., flat) back­
ground field these reduce to a single 6 function, which 
expresses the conservation of momentum of the n field 
quanta taking part in the elementary process described 
by the vertex in question. The calculation of specific 
processes is usually most conveniently performed in mo­
mentum space; the development of the general theory, 
however-in particular, the demonstration of the 
covariance of renormalization procedures-:-is best done 
in coordinate space. 

Because of the commutativity of functional differen­
tiation the bare vertex functions S,>J'k··· are completely 
symmetric in their indices, and S,iJ corresponds to a 
self-adjoint linear operator. When employing the nota­
tion (2.5) we may regard the symbol S2 as fl,ctually 
representing this operator. Note:-The abstract notation 
must be used with a measure of caution because the 
associative law of matrix multiplication does not always 
hold. If <J>i and Wi are two functions which do not vanish 
rapidly at infinity, the value of the expression <J>'S.,;~i 
may depend_ on which implicit integration is performed 
first. This ambiguity may be removed by using arrows 
to distinguish the two possibilities: .p-52'1' and .p-.S2W.9 

The present discussion will be limited to boson fields. 
For the extension of the formalism to the case of 
fermion fields, which involves anticommutative dif­
ferentiation and antisymmetric vertex functions, the 
reader may consult the reference given in Ref. 6. 
This reference contains detailed proofs of some of the 
important theorems to be stated in what follows. We 
shall therefore restrict ourselve.> here to sketch-proofs 
or simple statements of these theorems but will take the 
occasion to improve their presentation. 

3. THE QUANTIZED LIGHT CONE AND THE 
DEFINITION OF TIME. GREEN'S THEOREM 

In a standard hyperbolic wave theory the operator 
Sz defines a class of characteristic hypersudaces which 
separate spacelike from timelike directions. To this 
operator therefore falls the task of providing the 
definition of time. Since S2 generally depends on the 
background field it is evident that the background field 
may play a role in this definition. For most field theories, 

1 An alternative choice of basic variables is g-6121g,..-rr.,., which 

i!,~i!i ;~ in°n~'f[y n~ ~~n~a~~~fn~h~~~!' :;r~eexvf~n~~o~~ i'e~:h:: 
fields, necessarily coupled to the gravitational field, are present. 
Peres has proposed to treat the latter case by a method wl].ich 
make~; use of an additional constraint. [See A. Peres, Nuovo 
Cimento 28, 865 (1963).) It should be remarked, however, that 
the pre~;ence of an infinity of bare vertice~; does not pose an 
essential difficulty for the theory, as we shall see 

'The symbol -denotes transposition. 

the characteristic surfaces are in fact unaffected by the 
fields themselves; only in the case of general relativity 
does the background field exert an influence. 

In the quantum theory S2 is not only a differential 
operator but also a quantwn·mecbanical operator. In 
gravity theory the position of the light cone thus be­
comes a q number. Critics of the program to quantize 
gravity frequency ask "What can this mean?" A good 
answer to this question does not yet exist. However, 
there are some indications where the answer may lie. 
We have seen in I that the canonical formalism can be 
developed to a considerable degree without the question 
arising. This is particularly true when the discussion is 
carried out in the umetric representation," in which 
the metric appears as a c number. It is also true in 
Leutwyler's analysis10 of transition amplitudes as 
Feynman sums over classical histories. Where do these 
analyses break down, or rather, where must they be 
supplemented by more sophisticated reasoning? They 
must be modified at precisely the point at which it be­
comes necessary to account for radiative corrections 
and field renormalization. 

In the covariant theory we shall not make use of a q 
number S2. Our approach will be that of perturbation 
theory, with all its limitations. We thereby gain, bow­
ever, the possibility of working exclusively with c num­
bers. The background field will play two roles simul­
taneously. Firstly it will serve as a classical reference 
point about which the quantum fluctuations may be 
assumed to take "place. Secondly it will serve as a useful 
technical instn:unent. By varying the background field 
we can reproduce the effect which individual field 
quanta have on a variety of fundamental processes, 
including the laws of propagation (i.e., on the light cone). 
By allowing these effects to superpose nonlinearly we 
achieve the full S~matrix expansion, including all radia­
tive corrections.11 The only limitation is that we never 
consider more than a finite nwnber of quanta at once. 
The total perturbation series is never summed, and 
thus we never determine the answer to Pauli's specu· 
lation11 that quantization of gravity may yield an 
intrinsic cutoff by "smearing out" the light cone, which 
would at the same time be the definitive answer to the 
question of the meaning of a q number S2. 

A clue to the eventual answer may perhaps be found 
in the fact that quantum gravidynamics is not, by 
standard criteria, a renormalizable theory. It is not 
difficult to see that the strongest divergences (which, 
from a perturbation point of view, are responsible for 
the nonrenormalizability) are precisely those which 
arise from the fluctuations of the light cone. It may be 
hoped that these divergences will some day prove to be 
swnmable to a finite correction embodying Pauli's 

10 H. Leutwyler, Phys. Rev. 134, BliSS (1964). 

etr~~~~~=s~c:F:~~~/~~~~~~';u~,k=:,Jni;0 n~'~ue~J~1~h~~~:; 
of: w.e~~~ ~!~~~~~~~~a~:;~r~~!19s6J. 



162 QUANTUM THEORY OF GRAVITY. II 1203 

cutoff. Present evidence on this matter, as well as the 
significance of the Planck length, will be discussed 
briefly in the final paper of this series. 

We assume, then, that S2 defines two classes of time­
like directions, one of which will be arbitrarily called · 

where s~;'J" is a certain homogeneous quadratic com­
bination of delta functions and their derivatives. It is 
not hard to show that the self-adjointness of St implies 

(3.2) 

the past and the other the/uture. We assume furthermore More generally we have 
that the classical background possesses no geometrical 
singularities and that both time and space are infinite 
in extent. The work of Brill13 gives us confidence that 
nontrivial backgrounds (i.e., other than fiat space-time) 
having these properties exist. We note that such back­
grounds are absolutely classical, not only from a mathe­
matical but also from a physical point of view. A space 
of infinite volume has the capacity for an infinite 
amount of action a and hence can serve as the classical 
bedrock for setting boundary conditions. At the same 
time we note that the real world, even if it is finite, is so 
huge that it is effectively classical. For example, by re­
nouncing only slightly the infinite precision usually 
ascribed to the e.tergy and momentum labels of S-matrix 
elements, and by using the terms remote past and remote 
future in a relative sense, we can have B.n effective 
S-matrix theory which is extremely precise, based on a 
background which becomes asymptotically flat at the 
boundaries of a finite but large region. 

The remote past and remote future will be denoted 
by -co and co, respectively. If the space-time point 
which is associated with an index i lies to the future of 
a spacelik.e hypersurface 'Z we shall write i 3!>- 'E. If 
it lies to the past of!: we write!: ;;. i. If, relative to two 
points associated with indices i and j, respectively, a 
space-like hypersurface can be found such that i 3!>- !: 
and !: 3!>- j then we write i ~ j. It is possible to have 
both i ~ j and j ~ i simultaneously. In this case the 
associated points are separated by a spacelike interval. 
Evidently co~ i ~ -oo and oo~ 'Z ;lo> -co for all i 
and!:. 

Consider now the following expression: 

f (<1' 1S.w'lfi' -~'S,i•o'l'0)dx', 
in which, owing to the t'i-function character of S,;f', 

only those point;; x' in the immediate neighborhood of x 
make any contribution to the integral. By symmetry 
th.e integral of this expression over all x vanishes, pro­
~ded the functions <1>1 and '1'1 vanish sufficiently rapidly 
at infinity so that the integral exists. Since S2 is a 
differential operator this implies that the expression 
itself must be expressible as a divergence, of the form 

J (<l!iS,w>Iri'- <l!i'S.i'i'1'1)dx' 

= J dx' J dx"(<J?i's•o'J"iri"),,.., (3.1) 

11 D. Brill, Ann. Phys. (N.Y.) 7, 466 (1959); State University 
of Iowa Report No. SUI 61-4, 1961 (unpublished). 

" It is for this reason that it is impossible to quantize a Fried-

Jc<iF.,·w''-~''Fnw')dx' 

for any differential operator F;J' regardles& of whether 
it is self-adjoint or not, and for any pair of functions 
<1>', 'I'' regardless of their behavior at inlinity. The 
differential operator P'i'i"• however, has the symmetry 
(3.2) only in the self-adjoint case. 

If !: is the boundary of a finite domain fl then (J . .l) 
implies 

i dx Jax'(<f?lFw'lfi'-<f?i'Fi',>Ir') 

-!,a>;, J dx'f dx"~''f•,., .. 'f!l"<fi., (H) 

where dE,.. is the directed surface element of l:. If <I>' 
and 'lti vanish sufficiently rapidly at spatial infini1y we 
obtain, on letting n expand without limit, 

Here the condensed notation has been employed, and 
the double arrow +-+ has been placed above ju to em­
phasize that as a differential operator it has components 
which act to the right as well as components which 
act to the left. In a similar manner we write 

<~>~St"'f-w~s~w=(i- j_)<~>~-;,.'~'ca;,... (3.6) 

4. THE INVARIANCE GROUP, PHYSICAL 
OBSERVABLES, AND MANIFEST 

COVARIANCE 

The invarlance groups of both the Yang-Mills and 
gravitational fields are infinite dimensional and non­
Abelian. In the abstract notation the change produced 
in the field by an infinitesimal group transformation 
will be expressed in the form 

8'P'=R1.Jt" or, more simply, t'i'P=ROE. (4.1) 

mann universe of negative curvature for which no periodic 
identification of points is assumed and which is therefore "open" 
(i.e., infinite). 
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Here the I('" are the infinitesimal group paramus and 
the R'. are r.ertain linear combinations of the a function 
and its derivatives, with coefficients depending on the 
qls (see Table I). As functions of the x"s the IE-' are 
assumed to be differentiable and to vanish outside a 
finite domain of space-time but to be otherwise arbitrary. 
The group property is expressed in the form of a func­
tional differential condition on the R'.: 

R1 • .sR.i--R',,JR.i.=.R1.,&.,<4, (4.2) 

where the r:r., are the slnlciiWt constants of the group, 
which in tum satisfy 

c1 • .c',,.+c1,.c",..+c',.c•.ll=O. (4.3) 

A functional A of the IP's is regarded as a physical 
obsef'flable if it is a group invariant. The condition for 
this is 

(4.4) 

representation generated by the matrices R' •. 1, while 
a field index in the lower position wiD correspond to the 
contragredient representation. Similarly a group index 
in the upper position will correspond to the adjoint 
representation of the group, while one in the lower posi­
tion will correspond to the contragredient representa­
tion. The adjoint representation of the Yang-Mills 
group is the infinite direct sum of the adjoint representa· 
tion of the generating Lie group taken repeatedly over 
the points of ~time; the adjoint representation of 
the coordinate transformation group of general relativity 
is that of a contravariant vector field. 

Both the R'•J and the structure constants cT ,., are 
homogeneous quadratic combinations of the 6 function 
and its derivatives, independent of the .,'s. In the 
theory of radiative corrections we encounter the ex­
pressions R~ •. , and ''•' whkh are mathematically 
meaningless, involving the 6 function and its deriva· 
tives at :x.'=%. We shall find it necessary to assign 

The action functional in particular is a group invariant: _vanishing values to these expressions in order to main­

S,.R',.•O. (4.5) 

By functionally differentiating the latter identity we 
le.'U1l· that undel a group transformation the field equa­
tions are replaced by linear combinations of themselves: 

8S,,=S.u.a<PI=S,uR..I.6t"=-S,JRI •. ~f", (4.6) 

and hence that solutions go into solutions. We also 
learn that S1 is a singular operator, at least when the 
field equations are satisfied, for it then possesses the 
R',. as zero-eigenvalue eigenvectors of compact support ; 

S,R-0. (4.7) 

With the conventional choice of field variables given 
in Table I the dependence of the R' .. on the ~p's ~linear 
inhomogeneous, so that R• ... 1,. vanishes. This has im­
portant consequences for the manifest covariance of 
the formalism. For example, by repeatedly differentiat­
ing (4.5) we find for the transformation law of the nth 
vertex function 

as .• , ..... = -cs., ...... ,.R' .... ,+ · · · 
+S,,, ... ,-'1R' ... ,..)6t". (4.8) 

Similarly, from (4.2) we find 

6R'.-(R',,R'.-R',c",.)61!. (4.9) 

These simple linear laws permit the transfonnation 
character of many quantities appearing in the formalism 
to be inferred at once from the positions of the field and 
group indices attached to them. In general,· when in­
troducing new quantities, we shall be careful to insure 
that they obey the following transformation laws, of 
which (4.8) and (4.9) are special cases: A quantity 
bearing several indices will transform according to the 
direct product of a corresponding number of (con­
tinuous) matrix representations of the group. A field 
index in the upper position will correspond to the 

tain internal consistency of the theory; 

R' •. ,=O, c'.-=0. (4.10) 

The reasonableness of these assignments may be 
made apparent by noting the transformation laws of 
the quantities in question. Both transform contragredi­
ently to the adjoint representation of the group. In the 
case of general relativity they are therefore covariant 
vector densities of unit weight11 and may be presumed 
to vanish by virtue of the fact that space-time has no 
metric-independent preferred directions. In the case of 
the Yang-Mills group they may be presumed to vanish 
by virtue of the fact that the corresponding quantities 
vanish for the generating Lie group which, for physical 
reasons is necessarily compact. 

5. BOUNDARY CONDmONS, SUPPLEMENTARY 
COlmmO:NS, AND GREEN'S PUNCTIONS 

Suppose the infinitesimal change (2.3) ~ the action 
functional corresponds to alterations in the structure 
of the physical system which are limited to a finite 
region of space-time. The functional A will then be 
constructed out of field variables ewluated at points 
within this region, and its functional derivative A ,i will 
vanish at points outside. Under these circumstances we 
may distinguish two particular solutions of Eq. (2.4) 
which are of special importance, the retarded and 
adfl4ffUil, denoted by l[rp' and 6A+rp~, respectively, 
characterized by the boundary conditions 

(5.1) 

Because of the singularity of the operator St the 

15 The II functions ill Table I are to be regarded as densities of 
ze10 weight at their first argument and unit weight at their 
~ecorui. 
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conditions (5.1) do not determine the tJA±rp' completely, 
but only modulo transformations of the fonn 

6A±rp'i=&A::I:1Pi+R'.8E'". (5.2) 

Since surh transformations can be additively super­
imposed, they constitute an Abelian "gauge" group for 
infinitesimal disturbances. Unlike the situation which 
holds for the familiar gauge group of electrodynamics, 
the scale of these transformations varies from point to 
point owing to the dependence of R'. on the background 
field. This fact is responsible for all of the fol'mal com­
plications which arise in the quantum theory of non­
Abdian gauge fidds. 

Although Eqs. (5.1) do not suffice to detennine the 
iA*'P; completely they provide unique physical bound­
ary conditions. Because oJ the invariance condition 
B,.R'.=O the disturbance produced in any physical 
observable B is unaffected by the transformation (5.2): 

6A::!:B'c=B,~A±,p'i=B,"A:J:.'Pi-8A±B. (5.3) 

Nevertheless, in practice it is a convenience to restrict 
the lA±¥'~ by adding further conditions known as 
supplementary condit1"ons. 

As the stand&rd form for supplementary conditions 
we shall choose 

R,.B .. ±'P"=O, 

R...--r;Jll.'., 
(5.4) 

(5.5) 

whereyq is a matrix which may be used to lower field 
indices18 and which is arbitrary except for a single 
essential requirement, namely that it be such that the 
operator corresponding to the matrix 

P •• ;sR,,.R•, (5.6) 

shall be nonsingula.r and ha.ve unique advanced and 
retarded Green's functions~±.., satisfying 

P,..,a±.,,=--a.,, cs.7) 
Hm C•"'= lim C""'-O. (5.8) ... ;too , .. _ 

If the supplementary conditions (5.4) are not initially 
satisfied they may be made to hold by carrying out a 
transformation of the form (5.2), with 

8~•-C±..,R.;e.SA:t:t'~, (5.9) 

and the a .. ±IP' thus restricted will generally be unique. 
Although the arbitrariness of "'u in the general 

formalism must be stressed, it is nevertheless a great 
convenience in practice to impose the foHowing three 
additional conditions: (1) that 'YiJ shall be symmetric in 
its indicesi (2) that it shall ha.ve the group transfonna.­
tion law suggested by the position of its indices; and (3) 
that it shall be such as to make P ..,correspond to a local 

u If "r;; has a UDi9ue inverse this inverse may be UKd to raise 
fieldindicea, but this ill DOt esaential. 

(i.e., differential) operator. Condition {1) insures that P 
will be self-adjoint. Condition (2) maintains the manifest 
covariance of the formalism by insuring that P.., will 
transform according to the law suggested by the position 
of tis indices. Condition (3) enables (5.8) to be replaced 
by the stricter relations 

<i+"'=O for a:;;. (J, li-'"'=O for {J ~a:. (5.10) 

In addition to the matrix 'Yii we shall also introduce a 
matrix ;;.,11 for the purpose of lowering group indices. 
Like-ru it may be chosen in a completely arbitrary way 
except for a single essential requirement. The require­
ment in this case is that .:;.,, shall be nonsingular and 
possess a unique inverse .y-1"', which may be used to 
raise group indices.11 It is then not difficult to show that 
the matrix 

Fij~s.ii+R,.71"'RJIJ (5.11) 

is nonsingular, provided (as is true in the cases of 
interest) the R'. constitute a complete set of zero­
eigenvalue eigenvectors of S .ii having compact support. 

Although the arbitrariness of .y.,,, like that of 'Yiio 

must be stressed in the general formalism, it is again a 
practical convenience (and for the same reasons) to im­
pose three additional conditions, similar to those im­
posed on -y;1: (1) that .y,., shall be symmetric in its 
indices; (2) that it shall have the group-transformation 
law suggested by the position of Its indices; (3) that it 
shall be such as to make F ii correspond to a local 
(differential) operator. 

In the case of the Yang-Mills and gravitational fields 
it turns out that if all of the above conditions are 
satisfied then only one additional requirement, namely 
that the Green's functions of I and F shall have the 
weakest possible singularities on the light cone, lea.W 
to choices for "'ii and .y.., which are unique up to a con­
stant factor. These are the choices shown in Table I. 
They are the generalizations, to the case of arbitrary 
background fields, of the well-known Lorentz and 
DeDonder conditions of the corresponding linearized 
theories. Any other choices lead to more singular Green's 
functions. 

We note that the supplementary conditions are here 
imposed on the infinitesimal disturbances rather than 
on the fields themselves. The differences between this 
approach and that of more familiar formulations of 
gauge theory will become apparent as the discussion 
progresses. 

When the supplementary conditions (5.4) are satis­
fied, Eq. (2.4) may be replaced by 

F;,aopl--oA.<. (5.12) 

which has the unique advanced and retarded solutions 

BA±t'l=f[;:t:iiAJ. (5.13) 

11 The Cartan metric "r..,.•-c'l'.tc1•~ cannot be defined for an 
infinite dimensional group, and hence cannot be employed hen-
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the (J±ii being the Green's functions of P, satisfying 

F,.C.,'--81 (5.14) 

and [in virtue of condition (3) above] 

G~'=O for i 31- j, ~ii=O for j;;... i. (5.15) 

6.. CAUCHY DATA Aim RECIPROCITY RELA· 
TIOI\'S. THE POISSON BRACKET 

Instead of studying disturbances which are produced 
by physical alterations in the system it is frequently of 
interest to consider disturbances which originate at 
infinity and which satisfy the homogeneous equation 

(6.1) 

(We here employ the supercondensed notation.) U the 
supplementary condition 

(6.2) 

is imposed [cf. (5.4)] then these disturbances also satisfy 

Flup=O, F'§St+"fR"(1R-'Y, (6.3) 

and the value of &II' is determined throughout space­
time if it and its derivatives are known over any space­
like hypersurfa.ce l:. With the a.id of Eq. (3.5) it is r.ot 
difficult to derive the following integral realization of 
these facts: 

where 
(6.5) 

One has only to make use of the kinematics of the Gt 
and to assume that they are left inverses of -Fll: 

G±F--1, Gii=o. (6.6) 

retartkd effoct of A on B eqwls the ad"'""" •ffecl uf B 
tm A, and via f1n$a. Although the use of (6.8), which 
holds when 'Y andy are symmetric, is the easiest way to 
prove these relations, it is to be emphasized that since 
they involve physical observables (invariants) only, 
these relations are independent of such conditions. In 
particular it can be shown explicitly that &.t.:J:B and 
8s'"A remain invariant under arbitrary changes in the 
'Y's, including changes which destroy the symmetry and 
group-transfocma.tion properties of the "(1S. 

Another important relation which can be obtained 
is the following: 

1/C±f=G"YR, (6.11) 

which is proved by making use of (4.7), (5.6), (5.11), and 
the kinematic structure of .the Green's functions. Since 
(4.7) generally holds only when the background field 
satisfies the field equations, it is important to remember 
that Eq. {6.11) holds only in this case. The transpose 
of Eq. (6.11) may be used in. a straightforward way in 
combination with (4.4) to show that the solutions (5.13) 
of the equation for infinitesimal disturbances are con­
sistent with the supplementary conditions which were 
used to get them in the first place. Equation (6.11) also 
finds repeated use in the theory of radiative corrections. 

The above results provide the starting point for a 
covariant theory of the Poisson bracket. In the canonical 
theory equal-time Poisson brackets are defined for 
arbitrary functions of the g,.. and their conjugate mo­
menta, and the physical Hilbert space of the quantum 
theory is detennined by constraints imposed on the 
sta~ vectors. In the manifestly covariant theory 
Poisson brackets are ~ only for observables, and 
hence it is possible in principle to work within the 
physical Hilbert space from the very beginning. 1g More­
over, the covariant theory makes no distinction between 
equal-time Poisson brackets and others. 

The delinition, which is due to Peierls, 23 is 

From (6.3) and the arbitrariness of the Cauchy dtJUJ 
J~t;rp it then follows that they are right inverses as well: where 

(6.12) 

FG•= -1, FG-o. (6.7) (6.13) 

m!;;~ii~slf(~~:)~~-~j~n:!s ~sga~:s ~fo =: With the aid of (6.5) and (6.10) this may be converted to 

the following additional laws are obtained: (A,B)-A 1-CB1 , (6.14) 

G*'-=G .. , 

c-=-G. 
(6.8) 

(6.9) 

Combining these laws with Eqs. (5.3) and (5.13), one 
obtains the important reciprocity relations 

t;A:J:B=EBl-G±At=EAt-~Bt=~s·A, (6.10) 

which may be loosely expressed in the words, Ike 

° Kronecker I'• and I functions are replaced by the unit &oymbol 
1 inthesupen:ondensednotation. 

Peierls' definition makes immediately manifest the 
fundamental role played by the Poisson bracket in the 
theory of mutual disturbances in measurement pro­
cesses, and provides the most natural bridge to the 
quantum commutator and the uncertainty principle. 
In its quantum form, 

[A,BJ-i(DJI-DaA)-iA,-GB,, (6.15) 
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it allows one to derive in a straightforward manner the 
variational formula 

o(A'IB')~i(A'IiSIB'), (6.16) 

which, in Schwinger's hands, has been used to derive all 
of quantum electrodynamics. Here, and in the futur~, 
we use boldface to distinguish quantum operators from 
the corresponding functionals of the classical back­
ground field. In Eq. (6.16), I A') and IB') are eigen­
vectors of A and B, respectively; the field variables out 
of which A is constructed are asstuned to be taken at 
points all of which lie to the future of the points at 
which the variables making up B are taken; and BS, 
which represents a change in the functional form of the 
action, is assumed to be constructed from field variables 
taken at intermediate points. 

We shall make no use of Eq. (6.16) in this paper, 
firstly because in the absence of a complete operator 
theory we cannot be sure how to order the factors 
occurring in A, B, etc., and secondly because it is 
necessary in a generally covariant theory, to handle the 
problem of the relative temporal location of the opera­
tors A, B, and 6S in a completely intrinsic way. Instead 
of attempting to alter the form of the action functional 
we shall develop alternative techniques based on varia­
tions of the background field. 

It is worthy of note that the Poisson bracket is deter­
mined solely by the behavior of infinitesimal disturb­
ances. Since the commutators of the quantum theory 
completely determine the physical Hilbert space, this 
suggests that the quantum theory is obtained merely 
by appending a theory of infinitesimal disturbances to 
the classical theory. Such a view is defective in that it 
ignores (a) the factor ordering problems arising in the 
definition of the quantum operators (which like their 
classical counterparts are involved in nonlinear field 
equations) and (b) ·the existence, in the quantum 
theory, of nonclassical phase effects which manifest 
themselves in virtual processes and radiative correc­
tions. Nevertheless, if the word "infinitesimal" is 
modified to "finite but small" we shall see that this view 
accords quite well with the perturbation theoretic ap­
proach to quantum field theory. Moreover, because of 
the uniqueness of the formalism which emerges, it will 
appear that the exact theory is already completely 
determined by the behavior of infinitesimal disturbances. 

Peierls' Poisson bracket satisfies all of the usual 
identities. The only one which is not immediately 
evident is the Poisson-Jacobi identity. For any three 
observables A, B, C, we have 

(A,(B,C))+(B,(C,A))+(C,(A,B)) 
=A.,Gii(B,,.(;ikC,k), 1+B./;11 (C,kG~•A.o).l 

+C . .tGk1(A,,C1jB,i),, 
=A,,tB.,C,k(Gii(ju+Gi1Gk•)+A.,B.1,C,k 

x (GikG''+Gk'G'')+ A .J3 .{:.~,cc~·t:?~+G''GJ•) 
+A,,B,JC,k(G'1GJ1 ,1+Gj1Gk•.1+Gk1G•i. 1). (6.17) 

The first three terms of the expanded form vanish on 
account of (6.9) and the commutativity of functional 
differentiation. In order to show that the fourth term 
likewise vanishes an expression for the functional 
'derivative of G must be obtained. 

The desired e)o:pressi.on is a special case of a general 
relation obtained by varying Eq. (5.14). Under an 
arbitrary infinitesimal variation 5F in the operator F 
the G± suffer variations satisfying 

FlJG±= -8FG±, (6.18) 

which, taking into account kinematics, has the solu\.ion2 1 

Therefore, 

G±'i .• =G±'"Fab,.G±bi 

=G±1"(S.abo+R ..... .Rb"'+R.,.Rb",o)G±bi ! 
=G±'•S,,.b.G±6i+G±'"R,.,.,_6±""R;, 

+R'ti]±",.Rb",,GHi, (6.20) 

in which (5.11) and {6.11) have been used. 
Breaking {J up into its advanced and retarded parts 

and inserting (6.20) into (6.17), we see that in virtue 
of the group invariance of A, B, and C, only the terms 
involving the third functional derivative of the action 
survive. These terms, however, cancel among them­
selves, as may be seen by· writing them out in the form 

A,,B,,C.{(c+'•-G-"')(G+ibG-"-G-ibG+"') 
+(G+ib-G-jb)((;+l<'{;-im_G-k'{;+ia) 

+(GH•-c-~•)(G+'"G-ib-G-•afi+jb)]S,,.,., (6.21) 

in which use has been made of (6.8). 
We finally remark that Peierls' Poisson bracket, being 

defined for pairs of invariants, is itself a group invariant. 
More precisely, it remains unchanged not only when a 
group transL:lrmation is performed on the background 
field but also when a transformation of the form (5.2) is 
performed on the infinitesimal disturbances, cor­
responding to an arbitrary change in the "Y's and 
hence in the supplementary conditions. The demon­
stration is straightforward and will be left to the reader. 

7. CONDITIONAL INVARIANTS AND 
ASYMPTOTIC FIELDS 

The functional A appearing in (2.3) must be a group 
invariant. Otherwise the equation (2.4) for infinitesimal 
disturbances will not be consistent with the singularity 
condition (4.7). The invariance condition (4.4), how­
ever, need not hold as an identity but may hold in 
consequence of the field equations. That is, (4.4) may 
be repla.ced by an identity of the form 

(7.1) 

n Kinematics &SSUI'l: the associatiativity of the matrix product 
in (6.19). 
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When the a's are nonvanishing A will be called a 
canditianal invariant. 

Poisson brackets are as unique and well-defined for 
conditional invariants as they are for e:..act invariants. 
Therefore any invariant, whether conditional or exact, 
is an observable. The chief tool for proving these state­
ments is the lemma 

S,(;- -7R(ti+-(;-)R-, (1.2) 

which is a corollary of (6.6), (6.7), and (6.11). With its 
aid it is straightforward to show that the Poisson 
bracket of two conditional invariants is itself a condi­
tional invariant and that transformations of the form 
A- A+S,,a•, B- B+S.,b' leave the Poisson bracket 
unaffected. Evidently observables are defined only 
modulo the field equations. 

An important class of conditional invariants are those 
which can be constructed out of the asymptotic .fields. 
The asymptotic fields are defined by 

'f':tio: <P'-Go:t>l(S.i-S.;koiP.t) 

=<P'-Go:t>i(~SJ.tt0<P•<P 1+ ··), {7.3) 

the notation here being based on the formal expansion 
of the action 

The index 0, in either the upper or lower position, in­
dicates that the quantity to which it is affixed is to be 
evaluated at the zero point <P'= 0, which, with the con­
ventions of Table I, corresponds to flat empty space­
time. In Eq. (7 .4) terms linear in the <P's are absent 
since <P'=O is a solution of the field equations, and 
constant terms are irrelevant. 

If the amount of "energy" contained in the field is 
finite, e.g., if the field has the form of one or more 
essentially finite wave packets21 (which inevitably 
spread in both past and future), then the fields tp+ and 
<P- will coincide with <P in the remote future and past, 
respectively. The quadratic dependence of the leading 
term in the expansion of S1-S~0<P ensures that the 
difference between <P and <P± will behave like the 
potential due to a distribution of charge which becomes 
more and more diffuse in the remote past and future. 
Because of the spreading of the field the effect of non­
linearities diminishes with time, and we anticipate that 
the asymptotic fields will satisfy the linear equation 
S2°<P±=O. The formal proof is immediate. Making use 

11 In the quantum theory one speaks of matrix elements be­
tween analogous "wave-packet" states, and then the same argu­
n:'ents apply. In this case, however, a wave function renorma1iza-

!:~pl~~i~~t~e1 ~~~~ ~:~~~cte c~~;~~~~ ~~tb"~e!~ a;~-i~7~~~·~!~~ 
discussion of the S matrix. The reader should supply the missing 
Z's whw needed. 

of (4.1), (5.11), (6.11), and (1.3), we have 

S:0rp±o=S2°<P- (F o-'Y~o'Yo- 1Ro -'Yo)Go±(St- S2°<P) 

e(I+7oR.Co*R,}s,-o. (1.5) 

It is to be noted that this equation holds regardless 
of .the choice of the -y's. In fact it can be shown that the 
only effect of a change in the -y's is to produce a gauge 
transformation of the asymptotic fields, having the 
form 

(1.6) 

A group transformation (4.1) of the field tp has a similar 
effect. Thus 

6tp±o= 6<P-Go±[8St- (Fo-'Y~o-jo-1Ro-'Yo)6<P] 

>=-RrCo±Ra--yo8<P, (7.7) 

which takes the form (7.6) withl-1 

a;•--C,•R,-7oR!!. (7.8) 

For this reason the asymptotic fields can be used to 
construct group invariants by the dozen. One has only 
to introduce a set of field-independent quantities 
l.H, Is•-·· satisfying 

I.&.Ro=O, I~o=D· · ·, (7.9) 

and then define 

A±=I ... ~. B±=.fB<P:t.. (7.10) 

Since (7 .7) holds only when the field equations are 
satisfied the latter quantities, as well as all functionals 
of these quantities, are conditional invariants. 

In practice it is very easy to find differential co­
efficients I A, I B • • • with the desired properties, and sets 
of quantum invariants A±, B±- · · forming complete 
commuting sets in the physical Hilbert space are readily 
constructed. In this way the quantum states may be 
uniquely defined by the asymptotic behavior of the 
field. 

Poisson brackets for the invariants A±, B±- · · are 
determined in a straightforward manner with the aid 
of the easily verified identity 

Go= (1-Go*U)C(I- UG,•), (7.11) 

where 

U=F-Fo. (1.12) 

Thus, substituting (7.3) into (7.10) and using (6.8) 
and (6.14), we find 

(A±,B±)=I ... [1-Go±(Ss-Sl)] 
XG[I-(S,-S,')G,·]I,-. (1.13) 

•The set of transformation$ (7.6) forms an Abelian group for 
the asymptotic fields. It is to be emphasized that the relation 

r-s~~~:~~~~kura::~~~~~:~~~~ ~~~~~r~ issg~~~~~rmr~ 
ati, unlike~~. depend on 'P through the presence of the factor R. 
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If St-St0Were the same asF-Fothen (7.11) would be 
immediately applicable. The difference between the two 
quantities involves R's and Ro's. With the aid of (6.11) 
the Ro's can be brought to bear on the !'s, yielding 
terms which vanish on account of (7.9). The R's on the 
other hand must be moved in the opposite direction. 
Using (4.7), (6.11), and -S,~Is--I.- it is not 
difficult to see that this leads to a set of terms which 
mutually cancel. Hence, finally 

(A•,B•)=I.G.Is-. (7.14) 

8. THE LINEARIZED THEORY. ASYMPTOTIC 
WAVE FUNCTIOI\"S. HEUCITY AND 

LORENTZ lli"VARIAII"CE 

· The asympto~ic fields satisfy the :field equations and 
Poisson bracket relations of the so-called lifutJrUfld 
thuwy derived from an action functional of the form 
iS.J'It"*"IP:I:f, Since the linearized theory is well under~ 
stood we may at this point confidently pass to the 
quantum theory in· order to get our bearings on the 
ultimate goal; a covariant S-matrix theory. Our first 
task is to construct, from appropriate asymptotic in­
variants, creation and annihilation operators for in­
coming and outgoing field quant4-

In the case of the Yang-Mills and gravitational fields 
the simplest and most important invariants are, re­
spectively, the asymptotic curl and the double curl 
(Riemann tensor): 

F±·~!IIA±•,,,.-A"=•,.,,, (8.1) 

R"=,.,.,•j-(9"",. .... ~+.,=1=.~ .... - ,.~ ... -.,=!=, ... ..,.). (8.2) 

Both of these quantities have the linear structure (7.10) 
with differential coefficients satisfying (7.9). Using 
the well.Jroown cyclic differential identities satisfied 
by these invariants (see Table I), as well as the prop­
agation equations 

(8.3) 

oR±,.,.,=O, (8.4) 

it is straightforward to derive the following Fourier 
decompositions: 

F±<>,.~=i(2r)-112 ~ J [p,.(a±~,+az,._..,_) 
- p,(a±...¢+,.+a±,._e..,)]x,•e'P·•(2E)-tlldp 

+Hermitian conjugate, (8.5) 

R±,.,...,.!!l: -f(2r)--1/l J [p.p,(a±~.e.w+a±_~ .. ) 
+p,.p.(a±~+a±_,_.,_,) 

-p,p .. (a±A~+a±_e_,.e-) 
-p.t.(a±+44-+a±_.._oL.)]s'"'•~''ldp 

+Hermitian conjugate. (8.6) 

Here the a's and t"1s are functions of the 3·vector p, 
and the 4·vector p,. satisfies 

(p•)~(E,p), P'=O, E-lpJ. (8.7) 

'The e's themselves are the usual complex helicity 
pola.riza.tion vectors satisfying 

e:,.•=e"'"' C!'::t:'«±""O, e:•t:=t==1, 
1''~~"±-o, n·e±•O, (8.8) 

where n,. is an arbitrary timelike unit vector; 

•'--1. (8.9) 

The J.vectors Re ~ Im~, and p, in that order, are 
required to form a right-handed system. In the case of 
the Yang-Mills field the x, are eigenvectors of an ap­
propriate complete set of commuting matrices within 
the adjoint representation of the generating Lie group, 
and the index r labels the corresponding internal states.14 

The X's may be chosen real and independent of p, 
satisfying 

x.-x •• -a~., x,-xl=="'f"', (8.10) 

where -ya' is the Cartan metric of the generating group. 
If the quantum version of Eq. (7.14) is now used to 

oompute commutators of the asymptotic invariants 
f:.,.. and R=,...,. at different space-time points, and if 
the function Ga, which is determined by the zero-field 
forms of the operators F defined in Table I, is subjected 
to a Fourier decomposition, then it is straightforward 
to show that the a's and their Hermitian conjugates!& 
satisfy the following unique commutation laws: 

[a±.t,a±s]=O, [a±.t,a±s"']=6.u, (8.11) 

which identify them as annihilation and creatiOn opera.· 
tors, respectively. Here the capital Latin indices are 
used as schematic labels for the states of the cor­
responding quanta. The symbol aAB is to be understood 
as the product of a a function of the 3·momenta and a 
Kronecker delta. in the belicity and internal states. 

If the quanta of the Yang-Mills or gravitational field 
are able, through field nonlinearities and exchange of 
additional quanta, to bind each other into stable com­
posite structures, then additional creation and annihila­
tion operators for these structures will have to be intro­
duced. Although nothing is presently known about such 
possibilities, we do know that the complete set of all 
such operators will determine the physical Hilbert 
space. No other operators are needed for constructing 
observables. In fact, if group, arbitrariness is made 
explicit the creation and annihilation operators suffice 
for the field variables ,.• themselves. Comparing (8.1) 

11 Thc intemalst&ttl are • In Dumber, where 11 is the dfmeu. 
llonalityolthegcneratirtl'group. 

• Hermitian conjup.tion ill here dmotcd by '· The l)'lllbol t 
will be reserved u an abbreviation for ... • where - denotes lUI 
additional matrb: transpolltion in a vector space ,_ than the 
qwmtum-mechan1c:a1 Hilbert apace. 
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TABU: II. ExpressioD.S for the linearized Yang-Milla and gravitational field!!tcon:esponding to quantities 
appearing in the abstract formalism. 

Abstract 
oymbol 

Ro 

N 

M 

GoC+l•.r ... .,...,'IJ,..Gal+l(s~ 

~11+1d'•-ydGaC+l(~,::r') 

Comspondi.og expression for the gravitational field 

""'"' -,..,.,c~.,>•C2 .. >--~~z--
v• 

-l('J .. t.+"MP.) 

-l(II ... P.+M.-.,.,..p.) 

~ g J li(p,p') 
0 f;•fJ)' 

2(;·f.l)' 0 

Got+l_., •• (II.-OJrr+'J~'I,.-tJ,.'I,..)Gel+l(x,x') 

tac+liiO'•,...Cal+l(s,s') 

I i ,n·c-•J 
G01+l(y')•- ----tlp, dp•dP'tlP'dt'dP' 

(&)' c(+l ,. 

The hypercontour C'(+l runs along the real aus in the p1, p•, P' plaaes and forms a dosed loop In the P' 
plane surrounding the pole at +E. 

and (8.2) with (8.5) and (8.6) we see, in particular, that and 
the most general form for the asymptotic fields ,:' is Ss0Ro=O. (8.16) 

The latter relation, combined with the locality of Ro, 
(8.12) in fact permits one to infer, without computation, the 

vanishing of the integnols (8.14) as well as of 

where the u's a.re the functions indicated in Table II 
and the (±'s are completely arbitrary Hennitian fune­
tionals of the creation and annihilation operators. 

The u's appearing in Eq. (8.12) may be regarded as 
wave functions for the asymptotic states. Using the 
explicit forms given in Table U, one may verify by 
direct computation that they sa.tisfy the following 
important orthononnality relations: 

-ii u~'.i'D~,.=O, -i!, ut1.,fludZ,.. ... 1, (8.13) 

-;f. R,-r,.Rtdll,=O. (8.t7l 

Equations (8.14) and (8.17) imply that, as representa­
tives of the asymptotic states, the t .. s need be dcfi.ned 
only up to a ga.uge transformation •-u+Rofo, which 
leaves Eqs. (8.13) unaffected. In actual practice the •'s 
are restricted by a supplementary condition, namely 
the zero-field analog of (6.2): 

Ro-'l'oU=O. (8.18) 

When this condition holds, the w:'s satisfy 

(8.14) F.,.=o (8.19) 

where the hypersurface ~ is completely arbitrary except 
that it must be asymptotically spacelik.e, and where 1 
is the super-abbreviation for aAB. The ~ indepeq.dence 
of these relations follows immediately from (3.4) to­
gether with 

in addition to (8.15), and Eqs. (8.13) may be replaced 
by 

-;j.-7...a,=o, -ijot'f,~.=l. (8.20) 

(8.15) Tho validity of the l&tter orthonomWity relatinns 
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follows from the easily verified identity 

7~-S~<~-yX"f-1R.-~-'YR-y- 1X~'--y, (8.21) 

where the matrix (X");,. has the form 

(X•")"~<B'= -8"~·8/" (8.22) 

for the Yang-Mills field and 

for the gravitational field. 
The supplementary condition (8.18) does not yet 

completely determine the u's. Equations (8.18) to 
(8.20) remain unaffected by gauge transformations 
u- u+Roto for which ftoto=O. To obtain the u's of 
Table II a further condition must be imposed, of the 
form 

(8.24) 

Many different choices for Ro can be made which lead 
to the same u's. It will turn out to be a convenience to 
choose Ro in the particular way indicated in Table II 
where its momentum-space fonns, as well as those of 
Ro, are given. The 4-vector p,. appearing in the ex­
pressions for R,J is defined by 

where n~> is the timelike unit vector of Eqs. (8.8) 
and (8.9). It is easy to sec that fi~<, like p~>, is null. In 
analogy with the terminology employed for null hyper­
surfaces p~' may be called a characteristic vector and 
P~" the bicharacteristic of P~> relative to nw 

The presence of n~' introduces a nonrelativistic ele­
ment into the formalism, the effect of which must be 
detennined by asking for the changes in the u's and a's 
produced by changing n~". It guffices to consider in­
finitesimal changes an,. leaving (8.9) invariant. If 
Eqs. (8.8) are to remain invariant in form, one readily 
finds that the e's must suffer the corresponding changes 

8e:~,l'= =Fi8rpe±~"-:- (n· p)-1P"(e± ·00), (8.26) 

where Orp is an arbitrary infinitesimal angle.· If, in 
addition, the form of the decomposition (8.12) is to 
remain invariant the a's must be multiplied by phase 
factors e±''""' where s, the spin, is 1 for the Yang-Mills 
field and 2 for the gravitational field, the + sign or -
sign being chosen according as the hdicity is positive 
or negative. The first tem1 on the right of (8.26) pro­
duces inverse phase changes in the u's while the second 
term produces a gauge transformation which may be 
absorbed into the last term on the right of (8.12). The 
phase changes produce corresponding changes in the 
elements of the S matrix but leave transition probabili­
ties unaffected. Observationally, therefore, the classifica­
tion of states according to helicity is Lorentz-invariant. 

9. THE CANONICAL FORM OF THE COM­
MUTATOR FUNCTION. THE FEYNMAN 

PROPAGATOR 

Although the u's, in virtue of Eqs. (8.13), (8.14), 
ani:l (8.17), may be regarded as forming a complete 
orthonormal wave basis for the operator s~o, they do 
not form such a basis for the operator Fo. Fo possesse,; 
additional, nonphysical wave functions having ortho­
nonnality properties more general than (8.20). The u's 
define only the physical subspace of such function!'. 

In the case of the Yang-Mills and gravitational fields 
it turns out that a complete basis for Fo is obtained 
simply by adjoining to the u's the functions R0'.;r;"~ 
and R0i,.v",/e where the v's constitute any complete 
basis for the auxiliary operator ft0 : 

fo'!J=O, {9.1) 
whence also 

(9.2) 

By straightforward comput.ltion one may ,·eriiy tho\: 
in addition to (8.20) we now have relations of the form 

with all other similar ''inner products" of the function:> 
u, Ro'!!, Rov and their complex conjugates \'anishing. 
Since the matrix 

[ I 0 0 l 0 0 N-
O N 0 

(9.4) 

is symmetric, an orthogonal basis for F 0 can be found if 
-l.esired. However, since (9.4) turns out to be a non­
positive-definite matrix, the positive normalization 
(8.20) cannot be extended to the entire basis. It proves 
convenient not to insist on complete or1hog;ona\ity but 
to leave the basis as given. In this form it will be called 
a canonical basis. 

A particular choice of v's for the Yang-:'.-lil!s and 
gravitational fields is given in Table J I, along with the 
corresponding matrices N. Using the table it is straight­
forward to verify that the function Go, ,\·hich appears 
in the commutator of asymptotic invariant:;, may be 
given the following canm~ical dccomposifio11: 

Go=Gof+l+GoH, {9.5) 

G,t+l*=G~t-l, Go<+J- = -G0(-;, (9.6) 

iGo<+l=m.t+Rnt•N-lvtRo-+RvvN-1-7/Ro-. (9.7) 

• In the case oi massless tields having SJ..>in.s greater th;tn 2 
th~ functions do not suffice to complete the basis 
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The function c.<+> is called. the fJOSiti• tmergy Jvttditm. 
In a theory with no gauge group iG0<+>, regarded as an 
Hem1itian n'l&trix, must be positive semidefinite if a 
state of lowest energy-the vacuum-is to exist. In the 
present c:ase iGa<+l need be positive semidefinite only 
in the physical subspace. Since the physical subspace is 
represented by the functions u and u,f we see that this 
requirement holds. It will be convenient to introduce a 
special symbol for the projection of Go into the physical 
subspace: 

®eE:~C+>+~,<->' 

@,t+>• .. ~.(-1. ~.<+>-i!!!ii!-t;ll,t-)' 

(9.8) 

(9.9) 

(9.10) 

and (9.5), which lad to the boundary conditions 

G01l--Go<+Hi1 i;;.. j, 
=Go<-Hi, j:;. i. (9.18) 

These conditions may be generalized so as to be appli· 
cable to nonzero background fields. In the general case 
the Feymnan propagatOr is defined as that Green's 
function which, as a function of its fi.nt argument, has 
only positive energy components in the remote future 
and only negative energy components in the remote 
pasL These heunduy conditions suffice to yield the 
variational law 

IIG=G IF G, (9.19) 

and the expansions 
The importance of the canonical form for Co lies in 

the presence of the Ro's. It is easy to see, for example, G=G.(l-UG~-1-Go+G.XGo, (9.20) 

(9.21) that in virtue of (7 .9) the quantum version of (7 .14) 
immediately reduces to 

[A•,B•]-u,@,r.-, (9.11) 

which is obviously consistent with the decomposition 
(8.12}. Other more important uses of the cancmical form 
wiU be encountered later. 

For completeness we record the following additional 
relations satisfied by the quantities thus far introduced: 

P,.,R,-,,R,-R,-,,!1,, (9.12) 

.Yo-1R0 -'YJI.~=vM-1N-, (9.13) 

iC,<+>=d[-..,t I (9.14) 

-ii ,-To"vdl:,.=O, -ii vtTo"Vd};,.-M, (SI.lS) 

,_,.4..,cL.+~~ 

+<P·PJ-'(;.P.+M.J. (9.16) 

Here C,c+> is the positive energy part of the function 
Co+- C,-, and Eq. (9.13) assures consistency of (6.11) 
with the decompositions (9.7) and (9.14). The explicit 
fonn of the ma.trix M appearing in (9.13), (9.14) and 
(9.15) is given in Table II fortbepaniculartJ'swhich are 

adopted there. The operator 7rt is related to Pain the 
same way that 7rt is related to Fa. The identity (9.'16), 
which follows from Eqs. (8.8) and (8.25), is used re­
peatedly in the verification of the decmiipoaitions (9.7) 
and (9.14). 

In the classical theory a dominant role is played by 
the Green's functions G±. In the quantum theory this 
role is usurped by the Feynma.n propagator. For zero 
fields the latter is defined by · 

G,..Go'"FGo'*", (9.17) 

the equivalence o£ the two forms following from (6.5) 

Xm(1-UGo)-'U•U+UGoU+···. 

The variational law (9.19) bas exactly the same form 
as Eq. (6.19) (or the advanced and ret&rded Green's 
functions. The Feynman propagator baa, in addition, a 
symmetry not poooessed by G±, namely 

c;,--c;,, G--G, (9.22) 

which follows from (6.8), (9.6), (9.16), and the(assumed) 
self-adjointness of F. The Feynman propagator and 
its complex conjugate may therefore be characterized 
as the only Green's functions which, when regarded as 
continuous matrices, obey all the rules of finite matrix 
theory-a characterization which may serve to define 
them uniqueJy even when the condition of asymptotic 
flatness does not bold and S-matrix theory ceases to 
exist. In a flat Euclidean 4-space F bas only one unique 
inverse (Green's function) which vanishes asymptotic­
ally, and the Feynman propagator is obtainable from 
this inverse by analytic continuation to Mink.owski 
apace-time, the "direction" of the continuation being 
correlated with the direction in which time is chosen to 
":O.ow". In this sense the Feynman propa.ga.tor may be 
regarded as tiN inverse of -F, ita complex conjugate 
being obtained by analytic continuation in the alterna­
tive direction. 

We now record for later use a number of identities 
involving the various Green's functions, which are 
derivable by straightforward algebraic manipulation of 
previous equations: 

G±-Go±(1-UG,•)-'-Go'+Go"X"Go", (9.23) 

X•m(1-UGo")-'U- U+UG±U, (9.24) 

X-(1±X*Go(::l:l)-1X:I:, (9.25) 

l±XGtt::l:l-(1±X::I:G0 t::l:l)-1 , (9.26) 

1+XGo- (t±X±G,<±>)-'(1+X"Go") (9.27) 
-(1-UG,)-', . 
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1-UGo:t:.., (1-UGo)(lTXGo<=H) 
= (1- UG0)(1±X±G0<±>)-t, (9.28) 

G=G±g::G<±>, (9.29) 

G<±>a;(l+Go:!,X±)GoC±>(t±X:I:Go<±l)-1 
X(HX"Go") (9.30.) 

=(l+GJ)Go(±)(l=FXGo<±>)-1 

X(!+XG,), (9.30b) 

Go-Go*=- (G0<H-GH), 

X -X*= -X(Go<+>-Go<->)X*, 

G-G*=- (l+GcX)(G0<+>-G0<-l) 

(9.31) 

(9.32) 

X(l+X'G,'). (9.33) 

Equations identical in form with these are satisfied by 
the corresponding functions lie~±, O:t:, <io, 0, Oo<±>, 
O<±J, .:f±, %, and 0 associated with the operator fi. 

In the theory of the S matrix the function G plays 
the role" of the propagator of field quanta. When an 
invariance group is present this function suffers from 
a fundamental defect, namely, it propagates non­
physical as well as physical quanta. For purposes of 
defining "external-line wave functions'' (see Sec. 10) 
and checking the unitarily of the S matrix (which is 
defined only between real physical states) it is con­
venient to introduce alternative functions which prop­
agate real quanta only: 

@:I:E G:l:=f('MC:I:), (9.34) 

@<±ls: (1 +Go±X±)@0<±>(1±X±@0C±ljt 

X(HX"Go'). (9.35) 

The use of these functions, however, destroys manifest 
covariance and, when divergences are present, is 
limited to formal arguments. In actual calculations the 
functions G, G*, C, C± must be employed to assure 
consistency of renormalization procedures. One of our 
tasks will be to show how to pass formally from one set 
of functions to the other, 

The functions®:~:,@<±>, etc. satisfy a list of identities 
similar to those satisfied by G, G<±l, el al.: 

®~~:~::EiilGo*T®o<::l:l, 

®,~®,.(1-U®,.)-' 
-®,.+®,.I,®,., 

l:~:!!!!(l-U®o:)- 1 U=U+U®:~:U, 

= (l±X±®o<::i:l)-'X::I:, 

1=Fl:®o<±l=(l±X±@0<±l)-1, 

1 + ~®,.- (1±X<®o'*')-'(1 +X "Go') 
~(1-U@,.)->, 

1- UG,•~ (1- U®,.)(n=I,®o'") 
= (1- U@o:)(l±X:I::@,<±l)-1, 

(9.36) 

(9.37) 

(9.38a) 

(9.38b) 

(9.39) 

(9.40) 

(9.41) 

@<±>-. (1 +®O±~)®o<±l(l =Fl±®o<±>)-1 

X(HI,@,.), (9.42) 

(9.43) 

l:~;-l;~: • ... -l:;~:(@oH>-@o<->)I:t: •, (9.44) 

®2.-®:i: •=- (l+®o::~:l;~:)(®o<+>-®o<-l) 
X(Hx,•®,.'). (9.45) 

The only difference is that ®o;:, ®:~:, l:, unlike Go, G, 
X, are nonsymmetric, which accounts for the ± signs 
attached to them. From (6.8) and (9.9) it follows that 

®.,.-~@,_, ®.-~®-, 1.,. -~L. (9.46) 

We must evidently ask what difference it makes if we 
use ~L instead of®+ as a replacement for G. In order 
to show that it in fact makes no difference we must 
first develop the formalism so~ewhat further. 

10. EXTERNAL-LINE WAVE FUNCTIONS. 
FUNDAMENTAL LEMMA 

Consider the following functions: 

!"= !,. Cf"WWZ,. (10.1) 

In virtue of Eq. (6.4) these functions satisfy 

Ff•.~o (10.2) 

and reduce to the asymptotic wave functions u in the 
remote future and Past, respectively. If (as is always 
assumed) ti is based on a choice of 'Y's which cor­
responds to the same supplementary conditions (6.2) 
as those which are imposed on the u's [Eq. (8.18)] 
then the j±'s will also satisfy the equations 

R-yf±=O, S,J•~o. (10.3) 

By making use of the combination law 

C~ f. GpC.n;., (10.4) 

which is a special case of (6.4), and taking note of the 
symmetries (6.9) and "fo-~- l[d. Eq. (3.2)] as well 

as the fact that· F reduces to j';, in the remote past 
and future (because the background field is then dis­
persed to a. state of infinite weakness), one may show 
that the f±'s constitute two distinct complete ortho­
normal bases for infinitesimal disturbances on a non­
vanishing background: 

-ii 1*-i"f±d'E."= -ii f*S"'f±dl'.,.=D, 

(10.5) -ii f*t1"'J±cfZ,.= -if: j±t';l'j±d!.,.= 1. 
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The j±'s are basis functions for "classical" waves. 
In the quantum theory a different basis, satisfying 
boundary conditions which take pair production into 
account, must be employed. The method of construct­
ing the latter basis will be most clear if we first obtain 
an alternative form for the /*'s. Taking note of the 
kinematic structure of G we may rewrite Eq. (10.1) 

=G±(Fo-FO)u= -G±FrJU 

=(l+Go±X±)u, (10.6) 

and, in view of the supplementary condition (8.18), also 

(10.7) 

These fomt:; suggest that the modified functions which 
we seek are 

1=-Gs,•u--GFoO-(t+G.X)u, (10.8) 

in which the Green's functions G± are replaced by the 
Feynman propagator. However, such functions are 
inappropriate for the following reason: In the remote 
past they possess not only con~ponents from the physical 
basis u but also nonphysical components which have 
been "scattered backwards in time" and which appear 
because the quantity X has nonvanishing matrix ele­
ments between physical and nonphysical states. 

The desired functions are obtained from (10.8) by 
!>ubstituting ®:for G: 

f:=-®~21lu= -®:Fou= (1+®osl::~:)u (10.9a) 

.. (l+GaZX±)(l=F@0(.:~:ll:t)u, (10.9b) 

the final fonn being obtained through use of (9.39) and 
(9.40). In vir1ue ·of the decomposition (9.10) it is ap­
parent that these functions can be expressed as linear 
combinations of the functions j± and their complex 
conjugates. They therefore satisfy 

Ff.~o, r,f.-o. s,f.-o. (10.10) 

The f:t's are called extu-nal-line wau functions. It can 
be shown that they differ from the f's of Eq. (10.8) 
by an amount which cannot be expressed as a gauge 
transformation. The difference between f+ and f-, 
however, can be so expressed, and the ± signs are 
therefore physically irrelevant. For the proof of this 
we now derive a fundamental lemma. 

We first introduce the functions 

g=~<t+C,•g•)•, (to.u) 

which are related to the v's of Table II in the saine way 
that the J*-'s are related to the u's. That is, they coin­
cide with the u's in the remote future or past, and 

satisfy 
ftg*-=0. (10.12) 

From this it follows that 

(10.13) 

Since the functions Rg% coincide with Rov in the remote 
future and past, respectively, we may write 

Rg•- (t+G .. X•)Ro•. 

From (10.11) we may also write 

Rog•-R,(t+C,•.k•)•. 

(10.14) 

(10.15) 

Subtracting (10.15) from (10.14) and making use of 
the zero-field fonn of (6.11), we obtain 

(R-Ro)g±=Ga±(X±Ro--yoRoi'o-1.k±)u. (10.16) 

The desired lemma then follows on applying the opera­
tor Po: 

X±R~~J-'YoRrio-1:k±11-Fo(R-Ro)tf. (10.17) 

The quantity (R-R0)g± appearing in the last term 
of (10.17) vanishes at infinity rapidly enough so that 
integratiOns by parts may be performed when it appears 
as part of a larger expression. This means that the 
operator F 0 attached to it may act in either direction. 
Therefore, making use of the su_Eplementary condition 
(8.18), as well as v·Ro -'YoRo=ti·F0c:O, we immediately 
obtain the corollaries 

u-x;,.Rov=O, ~~-Ro-X±Rou=O, (10.18) 

which hold also when the u's and/or u's are replaced by 
their complex conjugates. Referring to Eqs. (9.10) 
and (9.38b) we see that these corollaries in turn imply 

u-l~oti=O, u-Ro-I~oti=O, etc. (10.19} 

Next1 by algebraic manipulation of Eqs. (9.36), (9.37), 
and (9.38) we find 

1,.-L-1,.(®.,-®~)L, (10.20) 

®.-®--(l+®.,i.,.)(®.,-®~l 
X(t+L®~), (10.21) 

®D+-®o-""'Go-®o (10.22a) 
=-iRovN-1v1R0--iR!iDN-1-u1Ro­

+iR.0v*S-17!-Ro-+iRot*N-1-v-Ro-, (10.22h) 

in which use has been made of the canonical decomposi­
tion (9.7). These results may finally be combined with 
(9.40), (10.14), and (10.19) to yield 

f.-f-- (1+®.,i.,.)(®.,-®~lL• 
:o:(l+Go+X+)(1+®o(*>X±)-1 

XRo( -ivN-1ut+iv*N-1u)Ro -I_u 
=-R(-ig+-N-lvt+iC*N-1v-)R8-Lu, (10.23) 
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showing that the two functions indeed differ from one 
another only by a gauge transformation. 

11. AMPLITUDES FOR SCATTERING, PAIR PRO­
DUCTION, 'AND PAIR ANNIHILATION BY THE 

BACKGROUND FIELD. THE OPTICAL 
THEOREMS WHICH THEY SATISFY. 

PROOF OF THEIR GROUP 
INVARIANCE 

Another important relation may be obtained by in­
serting (10.22b) into (10.20) and using (10.19): 

u-(<,.-L)u~O, u'(X.-L)u~O. 

From this it foliows that the quantities 

h=ut:f±u, 

v~ut:f±u•, 

Asu-l±u, 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

are independent of the ± signs, showing once again the 
irrelevance of the signs. 

I, V, and A are, respectively, the amplitudes for 
scattering, pair product1'on, and pair annihilation of field 
quanta by the background field. More precisely, they 
are the amplitudes for these processes when it is assumed 
that the quanta themselves do not interact with one 
another but behave as the quanta of a model field 
theory with action functional iS.;;';'J, 

By making use of (9.46), as well as (9.44) and its 
transpose, one easily verifies that these amplitudes 
satisfy the following relations: 

v-=v, A-=A, 

I -It =i(!Jf+ VV1)= i(IfJ+AtA), 

A- V'=i(Al'+rVt)=i(vti+I*A), 

(11.5) 

(11.6) 

(11.7) 

V-At=i([At+VI*)=i(ItV+Atr). (11.8) 

Equations (11.5) express the Bose statistics satisfied by 
the field quanta; Eqs. (11.6), (11.7), and (11.8) are 
relativistic generalizations of the well known optical 
theorem for nonrelativistic scattering. The latter equa­
tions play an important role in the verification of the 
unitarity of the S matrix, as will be demonstrated later. 

The amplitudes I, V, and A are not only independent 
of the ± signs but are group-invariant a.s well. In the 
present formalism group invariance has three distinct 
aspects: {1) invariance under group transfonnations of 
the background field; (2) invariance under changes in 
the Green's functions, as well as in the asymptotic 
wave functions u, resulting from changes in the 'Y's; and 
(3) invariance under gauge transformations of the u's 
for which the gauge parameters ,1° satisfy fl'o.\0=0.27 

Since the parameters ~~ .. of Eq. (4.1) are required 

"Changes of types (2) and (3) together yield the most general 
gauge transformation of the u's. 

to vanish at infinity, the asymptotic wave functions 
and the zero-point field remain unaffected by group 
transformations of the background field. Only the 
Green's functions G±, G, etc. change. Owing to the care 
whk:h has been taken to construct these functions in a 
manifestly covariant manner we may write at once 

5G±;'= (R',,,kGHi+ Ri".kG±ik)O~", (11 .9) 

which may be inserted into 

(11.10) 

This in turn may be inserted into 

O~W±1 =Go±OX±@o<±1 (t+X±(?.)o<± 1)- 1 (l+X±Go"') 
=F(1 +G0±X±)@0C±l(l±X±@0C±l)-IOX ±0}0 (::oJ 

X (1±X±~)ot±l)- 1 (1 + X±Go±)+ (1 +Go± X±) 
X~V±1 (1±X±®oC±l)-10X±(;0 :t, (11.11) 

which follows from (9.35). Owing to the boundary 
conditions on the 0~" the arrow on one or the other of 
the Fo's in (11.10) may always be reversed. As a result 
the second term of (11.11} vanishes, while the first and 
third terms together yield 

O@C±lii= (Ri,.,k@C:tlk>+Ri",k@C±lik)O~", (11.12) 

which shows that @t:tl and(\)± have the same trans- , 
formation law as G± and G. Inserting this transforma­
tion law into 

and noting that one or the other of the arrows is again 
reversible, we immediately get the desired result· 

0!=0, OV=O, OA=O. (11.14) 

With the aid of (10.9a) we also get, in a similar manner, 

~f± ;= R' ... ,f±iO~'", (11.15) 

which will prove useful later. 
The demonstration of invarian('e under changes 

in the "l"'s is more complicated. We first note that 
in order to preserve the supplementary condition 
(8.18) under a change in the 'Y's, the u's must suffer 
the gauge transformation28 

Ou= R~oRo -o...,.ou= Go±-roRa-ro-1Ro -o'J'oU 

=FR~o(±lRo-~')'oft. (11.16) 

From this, together with (9.9) and (9.10), it follows that 

O®o f±l= Go±1'oR.o"Yo-1Ro -o-yo®o<±J 

+®of±l8')'oR.o.Yo-1Ro-'YoGo±=F Rr/Jof+J Ru -~'Yo®o<±J 
=F®o(±l&yoR~of-lRo -. (ll.li) 

nne u's may also suffer an additional change Ou=Roh!o 
where Pr:Aro=O. See Eq. (11.30) ff 
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With the aid of (6.19), (8.18), and (9.36) this yields and (10.19). By making use also of the identities 

tJ!!J,.-@,.aF,pj,.-R4J,<+>R,-r,I/!J0«> f/D•yR-Ra>.;, (11.27) 

-f/D0">r,,R,C,<->R,-, (11.18) (!+fiD,.I.)Roo>-R(!+Co*.t•)o, (11.28) 

where 

aFo=&yoRif'io-1Ro-'Yo+roRo6fo-1Ro-'Yo 
+ToRrio-•R,-r,,. (11.19) 

Equation (11.18) may be used with (9.37) to obtain 

tJ!!J.-fiD.w.!I!J.+®.au®. 
'f(l-®,.U)-1R,l:,<+>R, -r,,f1D,<>1(!+Uili,J 

'F(1-i!!,.U)->@.<"a.,.,R,C,<->R,-(I+Uili,J, (11.20) 

where 

6U=6F-6Fo, (11.21) 

(11.22) 

which are proved, respectively, with the aid of (6.11), 
(9.35), (10.3), (10.6), and (9.40), (10.14), (10.18), we 
may recast expression {11.26) in the form 

lf.=R[C>rr, f.'FC!+Co*.t•) 
xC,<+>Jio-r,ofiD,<•>E,.uJ. (11.29) 

There remains only to show the invariance of I, V, 
and A under gauge transformations 

h=Ro!to, (11.30) 

where ar. satisfies l,~t,-o. This, however, is an ahnost 
immediate consequence of Eqs. (9.38b) and (10.18) 
and will be left to the reader. An explicit fotm for the 
change in the f:t's can be obtained by first decomposing 
lifo into the o's of Eq. (9.1); 

lifo-oBI>, (11.31) 
=ion (11.20) may in tum be used with (9.38a) to where the A's are certain coefficients. Use of (10.9b) 

and (10.14) theo yields 

ai.- (!+l,.®,.)aF(!+f/D,.I.)-aF,-IFI/!J,.E,. af.-Rg>ll>. (11.32) 

-E,.®,.aF,'Fl,.(R,l:<+>R, -.-,.m,<•> We note th&t Eq& (11.29) and (11.32) both leave the 
+®o"'rtoR.l:o<->R, ")l,.. (11.23) validity of Eqs. (10.10) undisturbed. 

We now note that in virtue of (8.18) Eq. (11.16) may 
be reexpressed in the form 

a.-®,.aF,.'FRJ:,<>>R, -.-,... (11.24) 

We also note that .-ap~-0 and, in virtue of (10.10), 
f. -.Ff.-0. Therefore, 
M- au-i=•+•-aiau+•-!;~:.&M 
-Tu-(~o<+JR,-&oraQ)o<*'>~ 

+E,.®,«>r,,R,C,<->R, -i.+rtoR.C.<>>R, ""t. 
+~•"'R,-r,,)o, (11.25) 

which v&Oishes by (9.14) and (10.19). Similarly, av-o 
and ai-o. 

AA a byproduct of this demonstration we again get a 
transformation law for the f='s. Thus, using (10.9&) 
and the fact that as,-o as well as ~,as.- 0, we find 

•f··-!l!l.,S,'o--tJ/!JJi,.. 
=l!l.aFf.±(1+1!l,.l:•)(R,G,<+>R,-r,,Jib,<•> 

+l!l•"'rtoRJ:,<->R,")(1+I.®,.)ii,. 
-®.yR-;-•R-r, f.'f(!+®,.l.) 

xu,<+>R,-r,I/!J,<.,E,.u, (11~) 

the final expreosion resulting from use of (9.2), (9.14), 

12. VACUUM STATES RELATIVE TO THE BACK­
GJI.OUND FIELD. ABANDONMENT OP THE 

STJI.ICT OPEJI.ATOR FORMALISM. 
CHRONOLOGICAL PRODUCTS 

ABD TREES 

In order to build up the S matrix we begin with the 
vacuum. Tlie vacuum state is customarily defined by 
the condition 

••J0)-0, (12.1) 

where the .~. are the annihilation operators or the 
decomposition (8.12). In this state no field quanta are 
present, and the background field itself vanishes (flat, 
empty space-time). It will be noted that no ± signs 
have been affixed to the symbol! 0), thus implying that 

... ;.. 

.... +• .. >-< 
olfll•. *•"->+• .... Y.,.. 

··-· *• ... >1<· .. ++ 
.... -(>< .... >+< 
.... ..fS.. ... .;:y 

RD FIG. 1. Graphical ~ 

•-3, 
Pin­
d"" 

U80cia with the n:­
ternal lines are to be 
pennuted just sufficiently 
to yield complete 1)'1'0-­
metry. The nwnericalsub­
Kriptlodicatesthenumber :r::.tatioDsrequirD:Iin 
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if no quanta are initially present none will be produced 
in the course of time.u 

Instead of working with I 0) we shall find it convenient 
to work with rdolitle trciC#(J I 0,:1: ao ), def10ed by 

a>IO,±=)=O, (12.2) 

where the annihilation operators o:"' are based on a 
separation of the total field " into a. classical back· 
ground rp, satisfying the classical field equations (2.2), 
and a quantum part + satisfying the same commuta­
tion relations as rp. The classical ba.c:k.ground is always 
assumed to contain a finite amount of "energy" and 
hence it not only superposes linearly with + in the 
remote past and future, where both satisfy the asympto­
tic field equations (7 .5), but it also disperses ultimately 
to a state of infinite wea.kness. We may thereforewrite11 

·- •++. (12.3) 

•"- .. ++". (12.4) 

,=!:-wa±+u•B±*+Rot::l::, (12.5) 

+±=uu±+fl.*a::!:•+Ro((:i:-~), (12.6) 

(12.7) 

• When dealing with masales~~ bare (I.e., unrcnormaliRd) quanta 
one must be cautious in user~ that the vacuum is stable. For 

::!~\!he~~/-c:;rJ,.~.-;.CtlfJ' ~ 
_vacuum. However,, one 

::w: t~~~~;e ~ ~:!YB::! ~ ~n:W~~ a:; 
having the momenta of massless quanta all parallel, c:onservation 
arguments cannot be invoked to eXcl\UI.e the decay, ud, ~trary 
toawides 
but must! 
intosofte 

Mills case the cubic tf'rm in the Lagrangian yields a matnx 

=~~ew=t~!ikde~en~~~~h: ~uar~k~~f d~:v:itv~:h: 
but in this case phase !!p&Ce limitations prevent till' decay. 
Gravitons and Ylli§·Mills qlllLIIt& are tbtrdore both stable. 

• Because of the linearity of the gi'OUJI trans( ormation law (4.1) 
4> transforms according to the homogeneous law f4o'=R'.,,..,.I,E•. 
From (7 ,7) It follows that the asymptotic field• tl'&ll&fonD ac­
c:ordingto,.•=--&to"'R.-.,-.. 

The states I 0,:±: ao) are functionals of the classic:..; 
background. Because the background is capable of JlW 

clueing and absorbing pairs, triplets, quadruplets, ett .. 
in individual elementary processes, any number ·•f 
quanta. may eventually be produced, and hence the ty;o 
states are not identical. Our chief concern will be to 
study the response of the vacuum-to-vacuum amplitude 
(0, oo I 0,- oo) to variations in the background field. 
Schwinger31 has used external sources for this purpose 
and bas shown that all physical processes can be com­
puted once the vacuum response itself is known. There 
is a well-known difficulty, however, in using sources 
whenanon-Abelianinvariancegroup is present, namely, 
group invaria~,ce requires the source to depend on the 
field. By working with a "free" background field we 
avoid this difficulty. 

Suppose now the background field suffers an in­
finitesimal change lrp which satisfies (6.1) so that the 
field equations are maintained. Since the total field 
operator p does not depend on which classical field is 
chosen as the background the operator + must suffer 
(modulo an irrelevant group transfonnation) an opposite 
change: 

(12.8) 

This produces changes in the vacuum states satisfying 

(••-&o•)(IO,±=)+&IO,±=))~o (12.9) 

a>aiO,±=)=&o•IO,±=). (12.10) 

By making use of the orthonormality relations (8.13), 
(8.14) and the decompositions (12.5), (12.6), it is easy 
to see that the unitary transformation which yields 
(12.10);. 

aiO,±=)=-•J .. +±-r,.a."dl:,IO,±=). (12.11) 

Hence, remembering that ++=+ and vi"= rp in the 
remote future, that +-= + and .,-- 9 in the remote 
past. and that 7rl'"""' 7,. in both regions, we have 

a(o,= IO,-=)=i(O,= 1(!.-j_)+"7•a.ax,lo,-=) 

-i(O,oo I+~(JJ-St)6ofl0.- oo) 

- -ia,iS.,,.(O,ao 1+'10,-oo). (12.12) 

We have now reached a critical point. From here on 
the description of the quantized Yang-Mills and gravita· 
tional fields iD terms of operators must be dropped. No 
one knows (or at any rate no one has yet shown) how 
to develop a consistent operator language for these 

a J. SclnriDcer, Pnx:. Nat. Acad. Sci. U. S. 37, 452 (1951). 
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fields which is at the same time manifestly covariant 
and useful for calculations. ~2 

What we shall do is to retain the operator language 
only for fields which possess no invariance groups. 
After developing the theory of such fields to the point 
at which all statements can be made in c-number 
language we shall then modify these statements in 
such a way as to become applicable to the Yang-Mills 
and gravitational fields. 

To achieve maximum simplicity we shall assume not 
only that the field IP possesses no invariance group but 
also that its components all commute with one anotlur at 
the same space-time paint. In practice this limits us to 
scalar fields possessing vertex functions S,;~4 •• , which 
involve no derivative couplings. However, it in no way 
limits the number of scalar fields embraced by the 
symbol 111' nor the algebraic complexity of their mutual 
couplings. Hence the abstract notation is still appro­
priate, and the combinatorial (i.e., diagrammatic) 
aspects of the theory are identical with what they will 
be for the fields of actual interest. It is by studying the 
combinatorics that we shall be led to a self-consistent 
general theory. 

The chief advantages of the. restriction to scalar 
fields and nonderivative couplings are that the ordering 
of factors in the field equations becomes immaterial, n 
chronological products can be defined unambiguously, 
and the operator (;;;which appears in the commutato1· 

reduces to the c-number function {')o of the background 
field when the space-time point associated with the 
index i is in the immediate vicinity of that associated 
with j. The latter simplification has the consequence 
that 

- i {. [,',t']'S";.tOIL'.t:a,.= 810;, (12.14) 
},, 

where l:, is any spacelike hypersurface containing the 
space-time point associated with i. 

With these simplifications we are ready to obtain 

.n The most beautiful attempt at such a language is that of 
S. Mandelstam [Ann. Phys. (N.Y.) 19,25 (l%2)]. By propagat­
ing local frames from infinity along intrinsically defined paths, 
Mandelstam is able to deal exclusively with operators which are 
coordinate-invariant and hence possessed of unique commutation 
relations. Mandelstam's formalism is on the borderline of being 
practical, but unfortunately becomes excessively complicated 
beyond all but the simplest calculations. A choice of paths is 
ultimately equivalent to construction of an explicit gauge, and 
the freedom to work with local (differential) rather than nonloca.] 
(integra\) gauge conditions, is to be preferred if at all attainable. 

$!Under these restrictions the usual practice of "no1mal 
ordering" is unnecessary as far as the formal theory is con­
cerned. The residue obtained on converting from ordinary to 
nor/IIal ordering can always be lumped with vertices of lower 
order 

further variational formulas. We fin;t compute 

o(o.~ lo'IO,- ~ )~ (o.~ 1 oo'lo.- ~) 
+Do(o.~ IO')l+''<o'lo.-~) 

+I;(o,~lo'l+''o(o'lo,-~). (12.15) 
Here the I+') are eigenvectors of the complete set of 
commuting operators +;, including j=i, taken over a 
hypersurface ~;, and the summation is to be extended 
over all the eigenvalues. If the variation (12.15) is due 
to a change in the background field we have 

w-•.-l<l+'l+'l+'))~o''(l+'lHI+'lJ. (12.t6J 

W-+''lol +')~ '•'I +'). (12.17) 
where .jliis restricted to~; .In view of(12.14), the unitary 
transformation which yields this is 

Making use also of (12.8) and (12.11) we therefore get 

O(O,oo I fiiO,- oo )= -Qit'i(Q,oo IO,- ro )-iQ\OiS,jk 

x(o.~ ITW+')Io.-~J, (12.19) 
where T denotes the chronological product. 

Since the field 9'' now bas no invariance group the 
oper~tor S2 is nonsingular, and Eqs. (12.12) and (12.19) 
may be rewritten in the forms 

(o.~ 1+'10,- ~ )~G"(o/iO•') 
X(O,~Io,-~). (12.20) 

(o.~ IT(+'o'liO,-~)~(-iG"+G"~'c_!.._) 
iO<P" £0<P1 

X(O,~Io,-~). (12.21) 
the Feynman propagator being used because of the 
boundary conditions specified by the relative vacua. 
Continuing in this way we obtain an infinite set of 
equations, all of which are comprehended in the 
generating-functional fonnula 

£ :_,,,. >,.(o.~IT<o''- .. o'·)lo,-~) 
.. -on! 

Xexp(>.G"~)<o.~ 10.-~). (12.22) 
'•' 

where the A's are arbitrary variables and the G;,. ·.,,.are 
defined by 
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It is easy to verify that the operators G1ifJj8rpi 
commute with each other, and from this it follows that 
the Gi1···• .. are completely symmetric in their indices. 
These functions, which are known as the bare n-poi11l 
funclitMs, have a well-known graphical representation 
which is illustrated in Fig. 1 for the cases n=3, 4, 5, 6. 
Feynman propagators are represented by lines and bare 
vertex functions S,. by vertices or forks with m prongs. 
The lines are joined together at vertices in the same 
ways that the propagators in the explicit expressions 
for the G1t···• .. •s are coupled to vertex functions by 
dummy indices. lt is easy to see that the diagrams 
making up Git· ·.;,.are obtained from those for G11 ' · .,,._, 

by inserting an additional external line in all possible 
ways. Gito··in is therefore expressible as the sum of all 
distinct trees having n branches, the indices attached 
to the latter being permuted just su:ffi.ciently to yield 
complete symmetry. 

A tree is any diagram which has no disconnected parts 
but which is divided into two disconnected parts by 
cutting any line. A tree therefore possesses no closed 
loops. We shall see that the first factor on the right­
hand side of (12.22) describes all the lowe.'lt-order or 
bare scattering processes. The radiative corrections, 
which involve closed loops, are all contained in the 
remaining factors. 

13. DEFINITION OF THE S MATRIX. 
ITS STRUCTURE IN THE ABSENCE 

OF AN INVARIANCE GROUP 

The S rrtatri.'C, like the vacuum states, may be defined 
relative to the background field. It then has as elements 
the amplitudes 

{At'·· ·A,.',oo !At·· ·A,.,- oo}, 

where 

IAt ··A,.,±oo)~o:I::A 1•···cr:I::-':IO,±oo), (13.1) 

If the possibility of stable composite structures is 
ignored, the above states fonn two complete orthogonal 
bases in the physical Hilbert space, and the scattering 
amplitudes may be regarded as the matrix eleruent'!., 
with respect to either basis, of the unitary operator 

(1.1.2) 

Here an implicit summation-integration is to be under­
stood over the repeated A's. It is ea.c;ily verified that 
S satisfies 

(13.3) 

wheretheB'sa.reanyasymptoticinvariants[cf. (7.10)]; 

B•=I•+"· (13.4) 

By the standard Lehmann-Symanzik-Zimmermann 
(LSZ} method one can show that the scattering ampli-

tudes are given by 

(A11 • ·A.',oo !A1· ··A,.,- ao), 

where" 

(A,'·· ·A,.',oo !At·· ·A,.,-oo) 
5 ( -i)-+"u;1A 1•*· · . .,).A~·· S,1,,,o. · -S.~~~~ o 

X(O,~ IT(+"· .......... ·+'·)10,- ~) 
X'S,It:t'1°· • ·S,Jt:,i,.0U;1A 1'' •U~A,, (13.6) 

and where the symbol P in (13.5) indicates that the 
expression following it is to be summed over all distinct 
pennutations of the A's and A "s, the subscript 

mini 
(m,n; ~= (m-l)!(n-nl (13.7) 

denoting the number of permutations required in each 
case. It is important to realize that the LSZ method is 
formally applicable even when an invariance group is 
present, and hence Eqs. (13.5) and (13.6) hold in the 
general case. This is because the creation and annihila­
tion operators, in virtue of (8.1.1), (8.14), and (12.6}, 
are unambiguously defined by 

a.±*=if,._ .,~So~"4JE11 , cr±=-i/,._ utS'ol'+ra,.. (13.8) 

The only difficulty is that we do not yet know, in the 
general case, bow to calculate the chronological pro­
ducts appearing in (13.6). 

In the restricted case of scalar fields with nonderiva­
tive couplings Eqs. (12.22), (13.5), and (13.6) permit 
us to write the following compact expressions for the 
scattering operator: 

• (-i)• - -
8= :I: -+:l::i1 .• ·+±'•S,,,Jro .. ·S,;.J.o 

,._, nl 

X(O,a:o IT(+''·· ·+i-)jO,-a:o): (U.9a) 

xexp(-+±'.S,,,P(;it..!..._)<o.oo IO,- oo):. (13.9b) a.• 
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The colons indicate that the creation and annihilation alone in order to check that the formalism yields an S 
operators making up the +±'s are to be normal-ordered. matrix which is unitary. This is one of the important 
An alternative and very useful version of {13.9b) is advantages of working with an arbitrary background 

[ 
8 & 5 ll 

=-···---···-
6aA,·· 6aA•'• QaAI OaA. 

where the t's, which will be called tree fumtions, are the 
bare n-point functions with their external lines removed: 

t1, •.• ,.=(-1)"S,,11,- ·S,;..i.Gi• ··i•, (13.11) 

field. 

14. THE S MATRIX IN THE PRESENCE OF AN 
IKVARIANCE GROUP. THE TREE THEOREM 

Consider the operator exp(c/lo'O/O'(J') appearing in 
Eq. (13.10). By taking into account the fact that rPo' 
depends on the background field through its dependence 
on the fs of Eq. (13.13), it is not difficult to show that 
the effect of this operator, when acting on any functional 
of the background field '(J, is to replace '(J by ~P+tP 
where q, is obtained by iteration of 

• I 
tP'=tPo'+G'1 L -s.~,, ...... fi>''· · .q,..... (14.1) 

.. -:nl 

Equation (14.1) has three remarkable properties. 
and where First, its iterated solution yields, as coefficients, all of 

(13.12) the tree functions: 

<j>,s (HG.xloloo~ Jo+ ]a•, (13.13) 

the f's being the functions defined by (10.8) and the 
/'s the corresponding functions with u replaced by u*. 

The above expressions can also be used to obtain the 
hierarchy of conditions on the scattering amplitudes 
which follow from the unitarity of the S matrix. Thus, 
inserting (13.9a} into StS= 1 and reordering operators 
into normal products, one finds 

• I 
:E -(+'' . ·+'ft)*c.:l;,· ·c.:,.;8(.pi>-. -+ift) 
.. -on! 

=r'(W'-W") 1 (13.14) 

• I • 
L;- L; (-1)'P(,.;l>(9'' . ·+'ft.p.tt .. ·+'')"' 
.. -on! 1-o 

'.i<c,,11 ••• c;.;ft(+i' ... ~·+''+'- .. +.t·)-0, 
m= 1,2, · · , (13.15) 

• I 
q,•=¢o'+G'i :E -t;;, ... ;,.f/>o''· · ·tPl•. (14.2) 

n-2n! 

Second, if 'P satisfies the classical field equations then 
so does ~P+fi>. Third, and most important, the second 
property holds even in the presence of an in11ariance 
group, provided the definition (13.13) is generalized to 

cPo=f:a+f::~:(*>a*+Rr, (14.3} 

where the f::t are the functions (10.9), the f±("'> are 
obtained from these by replacing u by u*, and .i is 
arbitrary.u 

The first property may be verified by straightforward 
iteration and term-by-term comparison. The second 
property is obvious; the third, however, requires special 
discussion. 

We first rewrite Eq. (14.1) in the form 

0-oo+G[•](S,[•+~J-S,[•Jo), (14.4) 

where the permutation sum P(•o:il is over the (m;l) in which the functional dependence of the various 
:h:;~(m-1) !H distinct arrangements of the k's, and factors is made explicit. Then we note that the relations 

W=-iln(O,c:Q IO,-c:Q). (13.18) O=K[•+oiJS,[•+ol] 

The equation SSt= 1 leads to identic'!.} conditions. 
We may note that Eqs. (13.15) are not independent of 

(13.14) but can be obtained from it by functional dif­
ferentiation. For this reason it suffices to verify (13.14) 

=(R-[,\]+R,-o)S,[•H], 

(14.5) 

(14.6) 

(14.7) 

(14.8) 
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permit us to write 

o-s.C•J<•--~>o-G[•JIS,[•H)-s,[•};ll 
-s.c.};-IF[•J->[•JR[•Jr-•[•JRl•Jr[•Jl 

XG[•](S,[..+•J-S,[•};) 
-s,[•HJ+>[•JR[•JC[•JR-[•JS•[•+•J 
- (1->[•JR[•JC[•JR• -.)S,[•+•J, (14.9) 

in which the analog of (6.11), with G"" replaced by G, 
has been used. The factor in parentheses in the final 
expression is generally nonsingular. Hence it may be 
removed, yielding the desired result 

s,[•+•J-o. (tuo) 
It is to be emphasized that this result depends in no 

way on the choice of 'Y's used in the definition of the 
Green's function G. In fact we can show that a change 
in the 'Y's produces only a group transformation of the 
qls, of the form 

&1>-R[•+•J&!. (14.11) 
We first take the variation of Eq. (14.4) and rearrange 
the result in the form · 

&f>,- &1>- aG[ • ](S,[ •+•J-S,[• };) 
-G(•J(S,[..+•J-s,[•Jl&f>. (14.12) 

We then insert (11.21) into (9.19) and make use of the 
analog of (6.11) to obtain 

IG-G&>RCK-RC>;CK+RCR-a,G. (14.13) 

Next we remember that 

s,[•+•JRC•+•J-o, (14.14) 
which results from functional differentiation of (14.8) 
and use of {14.10). Finally we note that the operator in 
the final parentheses in (14.12) can act in either direc­
tion. This is because of the fundamental assumption 
which is always implicit in the use of decompositions of 
the form (14.3), namely that the a's are such as to give 
f/IG the character of a wave packet. The difference be­
tween S2[t1+;] and s,[t~] therefore vanishes suf­
ficiently rapidly at infinity to make reversal possible. 

Writing R[ rp+;]= R+ Rt;, and making use of (14.4), 
(14.6), (14.11), (14.13), and (14.14), we now have 

&f>o-&1>-RCra,G(S,[•H]-S"") 
-G(s,[..+•J-3'~&1> 

-R&HR,~!-RCra,(·-·~ 
+G(F-,Ry-•r,)R,~! 

-R(t-Cr,R,.)&!-RCR-&,M-.. 1. 114.15) 

But from (11.29) and (14.3) we have 

&;0-R(C±C<>l)R-a,(.,-Rfl+RW, (14.16a) 

W• itT(l +C,±.1'±)[C,c+lR0 -~-yo@,e±l£±ua 
+00HR0 -~-yo@0C•llz *u*a:"], (14.16b) 

where 6l' is any change in t which one may wish to in­
clude along with the change in 1'· Equating the right­
hand sides of (14.15) and (14.16) we therefore get 

8~- (1-CK,R,~)-•(CR-a,.±C<±lR-~, 
. -C•R-&>RfHf'). (14.17) 

It is straightforward to show in a similar manner that 
the ga-uge transfonnation (11.30) in the u's also pro­
duces a change in f/J of the form (14.11), with IE given 
in this case by 

6E=(l-CR-,.Rl;)-1(g±6).a:+g±*fA*a*). (14.18) 

In both cases we can rewrite (14.11) in the form 

8(•+•)-R[•+->]8!, (14.!9) 

since the background field remains unaffected. 
We may ask what happens if the background field 

itself suffers a group .transfonnation. Here it is con­
venient to assume that the t of (14.3) transforms ac­
cording to the adjoint representation of the group; any 
portion of it which does not transform in this way can 
be lumped with the 6l' of (14.17). It then follows from 
(4.9) and (11.15) that f/IG suffers the transformation 

&f>o'-R'.J'i>o'W. (14.20) 
The tree functions, on the other band, transform in a 
contragredient fashion, i.e., in precisely the manner 
indicated by the downward position of their indices. 
This is because they are built from Feynman prop­
agators and bare vertex functions by simple contrac­
tions of indices, and because we have taken care to 
construct the propagators in a manifestly covariant 
way. From this and Eq. (14.2) it follows that; trans­
forms like ;o: 

(14.21) 

Hence 

&(•'+•~-R'.8!•+R' •. #W-R'.[•+•J&!•, (14.22) 
which has again the form (14.19). 

We now have the following lemma: If A[t~] is any 
inwwiant functional of the backgrotmd field then A [f'+~J 
remoins compleWy unchanged undw all the iniiDriance ....,,onnaliom of th• lh.cry. 

The above results suggest that when an invariance 
group is present Eq. {13.10) for the S-matrix ampli­
tudes ma.y be generalized to 

x~ .......... · . .,•·+;w[ •+• J)] , (14.23) 

·--~ 
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where W is defined by (13.18) and where 

~=ua+u"'a"'+Ror,, (14.24) 

l'o being an arbitrary gauge parameter sati<dying 
Frio=O. 

The demonstration that this is indeed the case is a 
task which falls into two parts. First, we must obt&in 
an explicit form for W[ IP J which, because the vacuum. 
to--vacuum amplitude is a·physir.al ob~ble, must be 
invariant under changes in the -y's as well as under 
group transformations of IP· Second, we must verify the 
group invariance of (14.23) itself. The first of these 
tasks is the most difficult and will be carried out in sub­
sequent sections. Here we accomplish the second. 

In view of the lemma stated above, group invariance 
of the term W[<P+•J in (14.23) follows from the in­
variance of W[~P] itself. Invariance of the term in !::1: 
follows from the invariance of the amplitudes I, V, and 
,\, which has been proved earlier. Only the tem1s in­
volving the tree functions require further investigation. 

These terms are manifestly invariant under group 
transformations of the background field. We may re­
mark that because the tree functions are obtained by 
iteration of Eq. (14.1), which involves the ordinary 
Feyrunan propagator, it is the ordinary Feynman prop­
agator which is used for the internal lines of the tree 
diagrams. However, because of the transformation law 
(11.12) the invariance of the tree tenns would not be 
spoiled if the functions @::1: were substituted for G. As 
a matter of fact, it can be shown that this substitution 
leaves the tree tenns unaffected, and that although the 
propagator G is the most convenient one to use in 
practical calculations, the propagator ®: could be used 
for the internal lines instead.18 

ln order to show that the tree tenns are also invariant 
under changes in q, and q,0 of the form (14.11), (14.16), 
etc., we observe that in virtue of .(14.2) and_(14.4) we 
may write 

• 1 E3 (n-1)/'l'"'~q,.,~l .. q,.,• .. =-.Po-F(q,-q,o) 

-~.-cs,[•+~J-S,.). 

(14.25) 

The variation of the right-hand side of this equation 
has the form 

..,, -cs,[•+~J-s,.J+~ -cs.c.+~J-s,J!•, 
in which use has once again been made of the rever­
sibility of the operator S2[1P+q,]-St[~PJ. Using Eqs. 
(14.10) and (14.14), as well as the equations ,;o-S.=O 

and &f>o -S2=0, the latter of which holds under (11.25) 
and (11.29), we see that this variation vanishes. Since 
the a's in the decomposition (14.3) are completely 
arbitrary it follows the et-ery tmn in tlze sum on the left 
of (14.25) is fully group-inwwi4td: 

a(t;, ... ,.~"·. -~'·)-o. (14.26) 

This result is known as the tree theorem. n 
The tree theorem provides a very useful check on the 

accura.cy of lowest·order scattering calculations. One 
simply replaces any one of the external-line wave func· 
tions by R a.nd looks to see if the resulting amplitude 
vanishes. Since scattering calculations involve lengthy 
algebraic expressions, mistakes are often discovered in 
this way. In applying the test it is important to remem­
ber that all the diagrams which go to make up a given 
tree amplitude must be added together. They are not 
individually invariant.81 

15. LORENTZ INVARIANCE. INVARIANCE UNDER 
CHANGE OF VARIABLES. QUANTUM VERSUS 

CLASSICAL SCATTERING 

Space-time in S-matrix: theory is asswned to be 
asymptotically fiat. A fiat space-time has group­
theoretical properties not possessed by a general mani­
fold, namely Lorentz invariance. InS-matrix theory the 
Poincare group must appear as an asymptotic invariance 
group.*' 

If the zero point of the gravitational field were chosen 
differently in this paper-corresponding to a manifold 
with some other group of isometries-then the formalism 
would ha.ve a different appearance, since the pertinent 
physical questions to be asked would not involve the 
sca.ttCring of plane waves but something else instead. 
It would still be necessary to make an independent 
check. of the theory for invariance with respect to the 
underlying isometry group, because the origin of such a 
group-in particular, of the Poincar~ group-is distinct 
from general coordinate invariance. 

It is quite easy to verify the Lorentz invariance of 
the present theory, much easier than it would be to 
check invariance under any other asymptotic or under­
lying symmetry group. This is because, with the usual 
choices of field variables (Table I), Lorentz invariance is 

11 R. P. Feynman, Acta Phys. Polonica 24,697 (1963). 
11 The test is usualJr carried out in momentum 6Jla.Ce. Since the 

wave--packc-t assumption Is implicit in the Fourier transformation 
process it is then no longer necessary to worry about conditions 
of revcnibilit of the order of v~oua operations. ln fact, the 

i':'ac'b~~,u?IJ~~~~!tN:,d Y~rlt~i~\~J(~r:~ea~~ 
attempt here UJ investigate this larger group, the existence of 
which seems to be related to certain conformal invariance prop· 
erties of the theory. W: remark, however, that such an in· 
vestlgation might yield impcrtant new insights into the properties 
oi S-rnatrix amplitude&. 
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manifest in both the Yang-Mills and gravitational 
cases. The only point which really needs checking is 
the invariance of the theory under changes in the time­
like unit vector n ... which is used to define the bichar­
acteristic p,. of Eq. (8.25) and the asymptotic wave 
functions u. But we have already seen from Eq. (8.26) 
that changes in n,. lead to changes in the u's which are 
compounded of (1) gauge transformations of the form 
(11.27), which have previously been shov.-n to leave the 
theory invariant, and (2) phase transformations. The 
phase transformations alter the scattering amplitudes 
only by phase factors and leave the probabilities them­
selves unchanged. Therefore, as long as we use helicity 
assignments for the initial and final states the theory 
is indeed Lorentz-invariant. 

The following question, however, arises: Suppose we 
were to replace the basic field variables of the theory by 
arbitrary nonlinear functions (or local functionals) of 
themselves. Would we then still arrive at the same 
quantum theory by the methods outlined here, even 
though such a change of variables would generally 
destroy the manifest covariance? In particular, would 
the scattering amplitudes remain unchanged? 

We must remark that not all nonlinear transfonna­
tions destroy manifest covariance. For example, in the 
case of gravity the change of variables "'•- rp',.. or 
IP,..- .p'"'', where rp',.,=g-•g,..-1/,.., rp'"'"""'l"t:"-rt", 
s¢f, affects neither the manifest Lorentz invariance nor 
the linearity of the general coordinate transfonnation 
laws. However, we need not consider these cases 
separately, as it is just as easy to COD&ider the general 
case directly. 

It is not diflicult to see that a change ,~- ,,, from 
one set of basic fteld variables to another prOduces the 
following changes in the various quantities appearing 
in the theory-4°: 

!,.; 
S./•S.1Brp'~=O, (15.1) 

Bop" 8rp' a•¢ 8¢•&tp' 
S.'i'raS . .tr--+S . .t---=S,.tr--, 

8rp'i 8rp'i 8¢''8rp'l '"'''8q/1 
(15.2) 

(15.3) 

(15.4) 

That these changes must leave invariant the term in 
1z of the amplitude (14.23) follows from the fact that 
I: refers to disturbances which propagate without 
mutual interaction. The theory of such disturbances is 
identfual with that of infinitesimal disturbances on the 
background :field, and it does not matter what back­
ground variables are chosen to represent them. This 
reasoning also leads to the simple transformation laws 

(15.6) 

(15.7) 

provid'ed. we require "'ii to transfonn like S.'i [Eq. 
(15.2)] so that the Feynman propagat~;>r suffers the 
change" 

(15.8) 

Less obvious is the invariance of the tree terms. This 
is because the bare vertex functions, and hence the 
tree functions, unlike .Pa', do not transfonn in a shnple 
fashion. [See Eqs. (19.29), (19.30), and (19.31).] It is 
nevertheless true that when the tree functions are 
multiplied by f/Jo's, as in (14.23) or (14.25), the result is 
invariant. To see this we note that the right.hand side 
of Eq. (14.25), in terms of the new variables, becomes 

o~>r(S,'[ ... +o>']-So'>P')- -o>'-'S,'oi>' 

~ 1 !"' !'•'' ) --.;ls. ;>~+--~'of>·+··· . (15.9) 
21Jr/"1.,11.,.. 

Since the wave-packet assumption is always implicit, the 
nonlinear terms in the .P's inside the parentheses vanish 
at infinity rapidly enough so that for them the anow on 
S,u may be reversed. Expression (15.9) therefore re­
duces immediately to (14.25), and we have, for all n2:3, 

(,, ... ,.,f/lo'''···t~Jo''*-t., ... ;J/Io1'···t~Jo'•, (15.10) 

a result which, in each individual case, can also be 
verified by a straightforward but nontrivial computation. 

There remains to be discussed only the tenn in W. 
Since W is a physical observable its value must remain 
unaffected by changes in the mode of description of the 
field. Its functional form must therefore adjust in such 
a way that 

(15.lla) 

(15.5) which, together with (15.5), impli" 

W'[•'H']-W[.,-t-.;]. (15.llb) 
• For convenience it will be assumed that •'j-Owha .-'-Oand 

that the tnn&formation Ia one-~ne analytic at the aero point 
110 that leriel s-olcll as (15.5) have a nonvanfahina: dolllaln of 
CODYertenee· 

41 Any other transformation law for "(;; vrould simply add a 
pup term to (1.5.6) and (15.7). The -, inva.rianc:e of the theory 
has ialready bom deinoutrated. 
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We cannot, however, give a proof of this since we do not 
yet possess a formal prescription for constructing W out 
of the basic building blocks of the theory, viz., the bare 
vertex functions and Green's functions. What we shall 
in fact do is use (15.11) as one of several interlocking 
requirements which will ultimately serve to define W 
in a unique manner. It turns out that (15.11) leads to a 
rather interesting and previously unknown result which 
can be translated into the q-number language as follows: 
When operator field equations exist (e.g., when no 
invariance group is present) they must necessarily 
contain nonlocal terms, which vanish in the classical 
limit It-+ 0, in order that the theory be invariant under 
changes of variables. We shall discuss later the reasons 
why such terms are not normally considered. 

The reader will have noted the ease with which 
fundamental theorems may be proved now that the 
theory has been expressed completely in c-number 
language. The c-number language has also the effect of 
emphasizing similarities between the classical and 
quantum theories of wave scattering. From a classical 
point of view the function cJ> represents a finite disturb­
ance on a background tp, and the tree functions describe 
the self-scattering which it suffers. The differences 
between the classical and quantum theories arise from 
the existence, in the latter, of the radiative correction 
term W[<P+cl>], which has no counterpart in the 
classical theory, and from the fact that it is not the 
retarded or advanced Green's function which is used 
but the Feynman propagator, with the result that 4> is 
complex instead of real. 

16. Fffi.ST APPROXIMATION TO THE VACUUM­
TO-VACUUM AMPLITUDE. PROOF OF ITS 

GROUP INVARIANCE 

We come now to the most dlllicult part of the theory; 
the determination of the functional W which describes 
aU radiative corrections or so-called vacuum processes. 
We do this first for a fictitious system defined by the 
action functional !S,;;+;~J and then later extend the 
results to the real system. It is clear, from the point of 
view of perturbation theory, that the fictitious system 
provides a first approximation to the real system. This 
approximation will be denoted by the subscript (1). 

Since the quanta of the fictitious system do not 
interact with one another the tree functions all vanish, 
and the scattering operator reduces to 

a's and a••s, respectively, we may then write (assum· 
ing (Of0)-1) 

(r:liSmtSmJa:)=e;cwu,-wm•>(a:1 la)(OI Fjo), (16.2) 

where a: and at are the eigenvalues and where 

F~Eexp[ -ia:tf!(o+a:)-ji(o:-+a:-}J.!"f(o.+a) 
-fiatAta:•] exp[i(at+a1)Ia+li(u1+a1) 

XV(o'+•'l+!ia-Aa]. (16.3) 

Unitarity requires 

2ImW",-ln(OfFfO). (16.4) 

Since W (1) is independent of the eigenvalues a and at 
it should be possible to simplify the right-hand side of 
this equation by setting these eigenvalues equal to zero. 
To show that this is indeed the case we first compute the 
commutators 

[o,F]- F[iio+iV(o'+•')], (16.5) 

[F,o']-[ -ia'I'-i(o-+a}V']F. (16.6) 

Each of these commutators may be used to reexpress the 
other in the form 

[o:,F]= [ila:+iV(a•+a:•)+ VI•a• 
+VV'(o+a)]F, (16.7) 

[F,o']-F[ -ia'I'-i(•-+alV' 
+aTV'+(•'+a'}VV'], (16.8) 

from which, with the aid of the optical theorems (11.6), 
(11.7), and (11.8), w• abtain 

Fo+iVo'F-(1+ii)[(1-ii')o 
-if!a-iAta•]F, (16.9) 

o:tF -iFa·vt = F(at(1 +il)+ia:t I +ia-A] 
X(1-ii'). (16.10) 

From these equations it follows, after factoring out the 
(Hi!) and (1-ii'), that 

o- (Of (1-ii')o-ii'a- iA'a']Ff 0) 

and 

-(Of ([ -ii'(o+a)-iA'a']F+[o,F]) fO) 
-8(0fFfO)/i!o', (16.11) 

0- (Of F[a'(Hil)+ia'I+ia-A]fO) 
-(Of (F[i(•'+a')I+ia-A]+[F,o']J fO) 

-8(0f FfO)/I!o, (16.12) 
S<n= :exp{iWm+ii+±-I±t±): (16·1a) which is the desired result. 

= :exp{iW{l)+io:±fJu± With the eigenvalues a and at set equal to zero 
+lio:::t:fVu±•+jio:±-Aa±): 1 (16.1b) Eqs. (16.7) and (16.8) become 

which is obtained by reexpressing (14.23) in the format 
of (l3.9b). The functional W Ctl will be determined by 
the requirement that So1 be unitary. 

The ± signs in (16.1b) are irrelevant and may be 
dropped. Introducing right and left eigenvectors of the 

(1- Vvt)aFe= Fou+iVcr•Fo, 

F_.t(1- Vvt)=atFo-iFoa-Vf, 

Fotsexp( -iia:-J.!"fa) 

(16.13) 

(16.14) 

Xoxp(tu.•v.•), (16.15) 
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whence 

a(ol Foi0)/11"• -ii(Oiao"FoiO) 

- -ii(Oia(F.,-+ia'VF,)IO) 

X(1-V'V)-• 

•tV(1- V'V)-'(OIFoiO), (16.16) 

a(OIFoiO)/W•ti(OIF.,•a•iO) 
•ti(1- V'V)-•(Oia•F,-iFol"•)a'l 0) 

the identity 

det(1- VV')~det(l+il) det(1-il') 
-det(1-A'A), (16.21) 

which follows from (11.6). We note that these results 
insure that the vacuum-to-vacuum probability lies 
between 0 and 1: 

0~ j(O,co jO,-co)ull•=rttaW(IJ 
•det(l- V'V)"':$1. (16.22) 

=i(l- vtV)-tvt(OI Fol O). (16.17) ::~~:;!;fe~d::~t7;~ a suitable choice of 

Under variation of V and yt (caused, for example, by Wc11=-ii lndet(l+iJ). (16.2.1} 
a variation in the'ba.ckground field} we therefore have 

2 lmBWm-&ln(OIFoiO) 

-t tr[V(I- V'V)-'&1"+(1- V'V)-•vtav] 
--tltrln(1-V'V) 

- -tllndet(1- V'V), (16.18). 

which, with the boundary condition: W (ti=O when 
V = 0, may be integrated to yield 

2 rmw,.,--t Indet(l-V'V). (16.19) 

If we had used the condition S(l1Smt-1 we would 
have arrived at the result 

2lmWm•-ilndet(1-AA') (16.20) 

instead. The two results are, however, identical in view 
of the transposition inva.riance of the determina.nt and 

From this we obtain at once 

W(ll=lilndet(l+X+G,(H) 
-i In det(t+.f+C,<+>). (16.26) 

Other forms for WIll may be obtained by~ use 
of Eqs. (9.21), (9.28) and their lUl&logs lor C,+, c. 
etc., namely 

det(1+XG~ 

w,.,--tilndet(1+x+a,+) 

In order to compute lowest-order radiative correc­
tions it is necessary to perform functional differentia­
tions on W (II· For this purpose it is convenient to re­
express W Ct> in a. different form. We first recall that a 
formal determinant like (16.23) may be expanded by 
the Fredholm method in terms of traces. Remembering 
the cyclic invariance of the trace and making use of 
(9.10) and (9.39) we may therefore write 

det(1+il)-det(1+iu1I.,u)-det(1-I.,!ll,<+>) 
-det(!+X+!ll,<+>)-•. (16.24) 

We next compare this detenninant with 

det(l+X+GoC+>)-1 , 

which contains the effects of both physical and non­
physical quanta. Using the canonical decomposition 
(9.1), the fundamental lemma (10.11), and EqL (9.2), 
(9.13), (9.14), and (10.18), we have 

det(1-UG~ det(l- OC~ 
-it:m--------im-------

det(l-UG,+) det(1-0C,+) 
(16.21b) 

detG detCat detG,+ detC+t 

... -lim detG, dett:> detG+ detC,+• • 
(16.21c) 

The last expression must be used only formally, as the 
detenninants of the Green's functions themselves do 
notreaJlyexist.61 

0 The determinants det(l-UGo), det(l-UGo+), ete. do not 
alst either. However, the divergenca which they contain are 

+iln det(H.tC~ 
det(1+.1'+C,+) 

(16.27&) ~~~::Oont~rf.l~:~ 
bmce da not a&ect the vacuum-to-vacuum probability (16.22). 
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Since the matrix I is group-invariant W (lh as given 
by (16.23), is invariant. This invariance must also 
hold for the forrm (16.26) and (16.27), and this pro­
vides us with a useful consistency check on our results. 
Expressions (16.26) and (16.27) are manifestly in­
variant under gauge transformations of the a's, since 
they do not even depend on the u's. Their invariance 
under changes in the 'Y's may be verified with the aid of 
(14.13)and 

(16.28) 

Thus we have 

detG 
I In detC> --tr(FIG)-2 tr(GIP) 

- -tr(FGa-,RGR-- FRC1iCR" 

+FRGR"a-,<;+2CR"a-,R) 

- -trhR7'1iCR")- tr(7'1i), (16.29) 

and similarly 

detC+• 
lln~--tr(>'li), (16.30) 

with corresponding expressions for the zero-point 
quantities, whence 6W<u=O. 

To verify invariance under group transformations 
of the background field we use (11.9), obtaining 

6 In detc=--tr(FIG•) 
--F.(R' •. .G•"+R' •. .G""')W 
-2R' •.• ~!·- (16.31) 

Similarly, 

I In detC•-- tr(fliC•) 
--fl .. (<",,a.,"'+"',,C..')I!' 
=-2c•,. .. a~"· (1~.32) 

We may now either use (4.10) or else note that these 
variations will be exactly cancelled by identical ex­
pressions coming from the G's and O•s of (16.27c). In 
either case we have 6W (1)=0, which completes the 
consistency check. 

We remark that no special signifu:ance is to be 
attached to the usc of the advanced Green's functions 
in Eqs. (16.27). Because of the transposition inva.riance 
of the determinant the retarded Green's functions could 
be used just as well. 

17. SINGLE QUANTUM PRODUCTION. 
PICTITIOUS VIRTUAL QUANTA 

The simplest example of a physical process which 
can be classed as a radiative correction or a closed-lOop 
effect is the production of a single quantum by the 
background field. In this process the background field 

w:;~~::a~ ~:):i'(~)~!"~~uanC::i~hlcl; 
fufini.te-<!imeasional inva.riance groups are, respectively, absent 
and prucnt. Lines terminating in dot& represent CJ:ternal-line 
wave functiona. Lint& bearing arrows represent virtual quanta 
OD the mass shell. Dashed Unes represent fictitious quanta. The 
asymmetry ol the vertices from which fictitious quanta emanate 
t::~e:~~ obliquity of the anJle at which the solid 

first produces two or more virtual quanta which, after 
various interactions with each other and with the back­
ground field (involving scatterings both forwards and 
backwards in time} proceed to coalesce into a. single 
quantum via elementary vertex interactions. From 
Eq. (14.23) it is easy to see that the amplitude for this 
process is 

(A,ao IO,-co)-M"'W.;f::I:C*H.t. (17.1) 

For simplicity we ignore the vacuum processes 
described by the exponential and replace f::1: <•l by the 
full wave packet f.aj we may regain individual ampli­
tudes by functional differentiation with respect to the 
a's when desired. In lowest-order perturbation theory 
the amplitude then becomes 

c;o•w ctM""' -ji(G1•-c;±I")F1~~:.•t/Jo' 

where 

+i(G.,-O:t:...e)F.~.o¢o' 
-±tit/lo'S,q~<:t:li" 

Ttit/lo'(V ,.,,,+ V Clil•)CC:t:l_,, (17 .2) 

(17.3) 

When no invariance group is present the second term 
on the right of Eq. (17 .2) is absent, and the ampli­
tude ma.y be given the graphical representation depicted 
in Fig. 2(a). The line terminating in a dot represents the 
external-line wave function, ~d the solid line bearing 
an arrow represents the function GC+>ii. The arrow may 
be assumed oriented in the direction "k to j"" and 
serves as a reminder that the virtual particles associated 
with it are tm the mass sMU, as follows from the fact 
that GC+> satisfies the homogeneous equation FG<+>=o. 

When an invaria.nce group is present the function GC+J 
propagates nonphysical as well as physical quanta, and 
the second term on the right of (17 .2) appears in order 
to compensate for the unwanted quanta.. Feynman, 
who was the first to call attention to the need for this 

• Unlike the Feymnan propagator the function G(+li~ is not 
10ymmetric: in its indices. 
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extra tenn, has referred to the auxiliary propagator 
ci<±) which occurs in it as the fm?pagator for jiaitious 
quanJa. u In the case of the Yang-Mills field the fictitious 
quanta constitute a set of massless scalar particles 
which transform among themselves according to the 
adjoint representation of the group. In the case of 
gravity the fictitious quanta are massless vector 
particles. 

It is to be noted that the fictitious quanta are needed 
only when the invariance group is non-Abeli&n. In the 
Abelian case the vertices V c .. n, to which they are 
coupled vanish. This is one of the reasons why quantum 
electrodynamics, with its Abelian gauge group, fails 
to provide a satisfactory training ground for studies in 
quantum gravidynamics. Another peculiarity of the 
vertices V C•illl is their lack of symmetry with respect 
to the group indices. Although they appear in a sym­
metric combination in (17 .2) they do not always appear 
thus in more complicated processes. Their asymmetry is 
indicated in Fig. 2(b) by making the solid. lines attached 
to them join the dotted lines at an oblique angle. The 
dotted lines represent iictitious quanta. and the presence 
of the arrows indicates that the propagator CC+l rather 
than C is to be employed. The sum of the three diagrams 
appearing in Fig. 2(b) gives the full production 
amplitude. ~ 

Explicit calculation of the amplitude leads to diver~ 
gences which must be handled by the methods of re­
normalization theory. For this reason use of the 
manifestly covariant functionsGU=l andCC:l:l is essential. 
From a purely fonnal standpoint, however, the func~ 
tions @C:l:l, which propagate only physical quanta, 
suggest themselves as na.tural replacements for GC:l:l; 
they should in principle permit one to avoid dealing 
with the fi.ctitious quanta. That is, we expect that it 
should be possible to rewrite (17.2) fOJma.lly in the 
simpler form 

G-@:~:;==FGC:i:l±:@<±l 

- (I+G.X)(G,-C!l,.)(l+l•C!l,.) 
=(I+Cil,.l,)(Go-C!l,.)(I+XG,) 

(17.6a) 

-(I+C!l,.l,)(G,-C!l,.)[l-l•(Go-C!l,.)]-' 
. X(Hl.C!l,.). (17.6b) 

Further reduction of these expressions is most easily 
amied out by direct formal expansion of the bracketed 
factors. Using 

Go-®O+= -GoC+1+®oC+l 
=iRfiDN-~wtRo-+iRafiN-1-t~tRo-, (17.7a) 

Go-®&-=G0C-l-@0 C-J 
-iR.o'D*N-~-Ro-+iRof)•N-1-1J-Ro-, (17.7b) 

which follow from (9.7) and (9.10), and 

l,R.o=X•R,o, (17.8) 

which follows from (9.38b) and (10.18), we find, with 
the aid of {9.13), (9.14), and the lemma {10.17), 

(Go-Cil...)[t-:£.(G,-C!l.,.)]-' 
- i[Ro(l +CoC+J,t+)-~t~N- 1t~f Ro-+RoVN-t-1Jt 

X(1+.t+Co<+l)Ro-]-Ro(1+Cal+l..f+)-1uN-1 

XvtRo-~RofJN_1_1Jt(l+..f+~o(+l)R0-. (17.9) 

(The corresponding formula with + signs ~laced by 
- signs can be obtained from this by transposition.) 
Inserting this into (17.6b) and using the analog for 
the functions Co, C, etc. of Eq. (9.27), together with 

(!+C!l,.l,)RoV-R(!+Co•2•)•, (17.10) 

which follows from {9.40), {10.14), and (10.18), we 
obtain 

G-@+= -GC+>+@C+> 
-iRQ++iQ--R--RP+IC, (17.11a) 

G-(L,.Gc-l-Q}H 
-iRQ-+iQ+-R--RP...R", (17.11b) 

(17.4) where 

in which the propagators1 Cc:~:l no longer appear. 
Equation (17 .4) can in fact be shown to follow from 

(16.23). We shall here show its equivalence to (17.2) 
directly. For this purpose we must fi.rst assemble a 
number of fundamental identities. 

We begin with Eqs. (9.20), (9.21), (9.37), and {9.38), 
which, after a certain amount of algebraic manipulation, 
yield 

X-l,-X(Go-lll..)l;=l,(Go-Cil .. )X (17.5a) 

= l,(G,-C!l .. )[1-l,(Go-C!lo,•)J-•l,, (17 .5b) 

Q+"(I+C.t}oN-'o'R,"(I+l,.C!l,.), 

Q_a(1+C.t}o•N-'v".llo"(I+LC!l...), 

(17.12a) 

(17.12b) 

P +•P _ -1!11!1 (t+C.$>DN-1ot Ro -~Rr~~N-1-tlt 
X(t+2Co). (17.13) 

Before Eqs. (17 .11) can be used to compute the effect 
of replacing GC:I::> by @C:I::> some special properties of 
the functions Q:~:;, P :1: must be derived. First we note 
that Eq. (9.2) pennits us to write 

F(I+Gr'X•)Roo=-'Fc*FJI.,-FJI;=O. (17.14) 

From this, together with (4.7) and (5.11), it follows that 

P-;-•R"T(I+Gr'X•)R.. 
-R"F(!+q .. X•)JI.,=O. (17.15) 
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By the laws of pt')pagation, taking into account 
boundary conditions in the remote past and future, 
this in tum implies 

1'.._1R--y{l +Go±X±)Rov= (1 +~o±..1±}'Yo- 1Ro-'YJlofl 
=(t+C0±2±)vM-1N-, {17.16) 

in which (9.13) has been used in obtaining the second 
form. Analogous reasoning, combined with (8.18), leads 
to 

-y-'R-'}"(1 +Go±X±)u= (1+0o±.k±)-yo-1Ro -"'(aU, (17.17) 

which also follows from {10.3) and (10.6). Equations 
(17.16) and (17.17), together with (9.40), then yield 

-y-'R-"Y(l+®o::~:.I:Jilofl= (1+C'o±2±)vM-1N-. (17.18) 

From this, with the aid of (9.14) and the analogs for 
Co, C, etc. of (9.27) and {9.30a), we obtain 

Q+"YR'Y'=i-'R-'l"Q--=iC<+J, (17.19a) 

Q_'YRf-1='Y1R-·yfJ+ -=-iC<-J. (17.19b) 

We also have the equations 

FQ, -~o, 

FQ,~O, 

frP::~:.=O, 

which are immediate consequences of 

(17.20} 

(17.21} 

(17.22} 

F(1+®o±l±)Rov= -F®::~:.FvRov=FoRov=O, (17.23) 

fi(!+GS),~-k'fi,,~fi,,~o. (17.24} 

~hese equations, combined with (5.11} and (17.19), 
g1ve us 

(17.25) 

For completeness we record here also the following 
useful and readily verified identities: 

S<J.G= -1-"YRGR-, 

S<J.G(±)=-"YRC<±lR-, 

@<±l'}"R=O, 

Stf»{±)=O, 

@<+>= -@<-l-= -if+(l+il)-lf_ (•W. 

(17.26} 

(17.27} 

(17.28} 

(17.29} 

(17.30} 

The last identity, which is obtained with the aid of 
(9.10), (9.42), (10.9a), and (11.2), shows explicitly 
that the functions @<±J propagate real quanta on the 
mass shell only. 

We are now ready to employ (17.11) in the verifica­
tion of (17.4). In this, as well as in many similar but 
more complicated derivations later to be stated without 
proof, repeated use is made not only of (4.7), (14.5), 
(17.25), and the other identities collected above, but 
also of a hierarchy of identities following from (4.8), 

namely 

s .• 1 .... .iRi. 
=-SJ;, ... ;.ft.1a,;1- • • ·-S,;1 .;.._pRi,.,;.., (17.31) 

which relate bare vertex functions differing in order by 
unity. We give the steps of the present derivation 
without comment: 

ii¢o•S,;;k@<+lik 
= iUI>o'S,;jk(G<+lik+iRi..Q+ a~:+iQ_ aiRk .. 

·- -Ri,.P+•f!Rk6) 

=iif/:lo1S .u.<;<+Jiil+i4au'(S .iJrft.ia,;+S ,;;R.i ... k)Q+ ail 
+i.Po0(S,.;.R11 a,;+S ,,;tRk .. )Q-«i 

+ii-Po'(S.;.Ri ... ,:+S,;;Ri .... )P+"f!Rk6 
=lU/lo'S,ij~:G<+>i•-ti.Po'R;~~ •. ,G<+>a{J 

+!i-Po'R.~~: ... ,G<->a{J, (17.32) 

In view of the symmetry relation (;<±l-=-C<•l 
[d. (9.6)] the last line reduces immediately to the 
right-hand side of (17.2). 

Aside from eliminating the fictitious quanta, Eq. 
(17 .4) has the important advantage of yielding an 
immediate formal proof of the group invariance of the 
amplitude 4-o•Wm.•· To see this we note that S_;;~: is 
identical with the tree function t11~:. Therefore, in view 
of (17.30) the right-hand side of (17.4) appears as 
a sum otlet' t,-u amplitudes in which all of the external­
line wave functions refer to physical quanta on the 
mass shell. Group invariance of the total amplitude 
follows immediately from the tree theorem. This 
possibility, namely of reducing all amplitudes to sums 
over tree amplitudes so that group in variance is assumed 
by the tree theorem, was first suggested by FeynmanY 
We shall now see how it works in more complicated 
processes. 

18. MULTIQUANTUM PROCESSES. 
FEYNMAN BASKETS 

Next in order of complexity are the lowest-order 
radiative corrections to the amplitudes for scattering, 
pair production, and pair annihilation by the back­
ground field. 46 These are obtained by functionally 
differentiating the amplitudes of Fig. 2 and using the 
variational law 

OG<±>=G<±lliFG+GliFG<±l±G<±1liFG<±l, (18.1) 

which follows from (6.19), (9.19), and (9.29). When no 
invariance group is present the result is 

¢o,.¢oi(Wm.•i+S,.-,ii.(Zk1WuJ,I)=!i.Po;.Poil,;jltG<+J-"! 

+it'¢o11;~:,G<+l""'(;<+J.,lt,.,.;¢oi, (18.2) 

which has the graphical representation shown in Fig. 
3(a). We see immediately that Feynman's idea works; 

·~ \Vhen the background field vaniobes these reduce to the 
self~ergy corrections to the 1-quantum propagator. 
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"' 
t· (~H;-;s-;s.\¢-·9-•9) 
·t>(¢-¢-9) ,. 

Fio. 3. Lowest-order radiative corrections to the 2.quantum 
amplitude. (a) Inva.riam:e group absent. (b) Invariance pou.p 
present. 

the total amplitude appears as a sUll'l. of products of 
tree amplitudes. In the figure the diagrams have been 
grouped into sets corresponding to the tree structure, 
i.e., to the two terms of Eq. (18.2). These sets are 
known as Feynman boskds. The key method in develop-­
ing the general theory of radiative corrections of 
arbitrarily high order will be to take diagrams having a. 
given topological structure and reassenible them into 
Feynman baskets. 

The corresponding amplitude when an invariance 
group is present may be obtained by three distinct 
methods: (1) functional differentiation of (17.2); (2) 
functional differentiation of (17 .4); and (3) replacement 
of G<+l by@<+> in (18.2) and use of the identities.(17.11), 
(17.19), (17.27), (17.31), etc. All yield the same re.u!t, 
namely 

9o ... i(W u1.u+S.q.tG.UW (tl,i) 

=ii-t>oic;./tq.~:zG5<+JJ:I 
+ii4Jo't".1@C+l .. @C+l•lt..,.AI./ (18.3&) 

=ficfl'u~{lq.~:zGC+lW+to~ozG<+l""'(;C+lr~lt.,.-.j 

-2Vcail,C•~C+liiV un7 -2V <lilaC"orC<+UIIVcTm 
- Ycail,C<+>...C<+li'Vc&lh- Vc,il..C<+l~(+JjtiVhJ)I 

-S ,q,.G,.,(V <•Ill+ V <llla)OC+l~, (18.3b) 

~~·hich has the graphical representation shown in 
Fig. J(b). In each case the derivation ia straightforward 
but tedious. Obviously, the amount of computational 
labor involved in converting from CM<+l to the functions 
G<+l and C<+l mounts rapidly as the complexity of the 
underlying tree diagrams increases. 

In functiona.lly differentiating either the external­
line wave functions or the physical propaga.tors it is 
necessary to have a. variational law for (MC:!:l analogous 
to (18.1). Thm mobtained by insertiDg (6.19) and (11.10) 
into (11.11) and then using (9.23)_and_(9.35), which 
yields 

fi@C:!:l-G±ap@<±l+@(:l:l3FG±TG5C:!:l3FfMC±l 
=®::~:3F@C::I:l+@C±l3F@~QSC%l1F@C:I:l I 

l!ld, incidentally, 

(18.4) 

(18.5) 

From Eq. (17.28) and the explicit form 

aF-a5t+3(-rR.Y1R-,.), (18.6) 

it then follows that 

afM><>-®,(6Srl->Rf"">nl->+>Rf""'R-&y)@'*' 
+®"'(6S,+&yR;-'r>+>IRf""'R->)®, 

±®'*'6S,(!I'*' 
=@:~:&S'~C:i:l+@C::t:l&St<M::I:±@C%la51@C±l 

+Ri:•(IR-,+r&r)(!l'" 
+®'*'(&rR+>IR)C>r. (18.7) 

When this law is used for the purpose of generating 
Feynman baskets it turns out that the last two terms 
never contribute anything owing to the presence of 
the R's. One finds also tha.t the @:!:'sin the first two 
terms may always be replaced by G's, a result which is 
directly related to the previously mentioned possibility 
of using G or f»;~: interchangeably for the internal lines 
of tree diagrams." 

Another fact which is useful in computations is that 
in performing functional differentiations one may skip 
over any -y's which OttUI'. Terms involving functional 
derivatives of -y's conspire mutually to cancel in any 
observable amplitude. This is a consequence of the ,. 
invariance of the theory. 

There is, however, one possible source of worry which 
needs to be disposed of. In passing from an expression 
like (17.2), say, to the expression (17.4), one makes use 
of (6.11) and many other identities which depend on 
the background field equations being satisfied. The 
right·hand sides of (17 .2) and {17 .4) are therefore not 
identical but are equa.l only modulo the field equations. 
They differ by an expression of the form a'S,,. One may 
ask what happens to this difference when il gets dif­
ferentiated. The answer is that, in the passage from the 
one-quantum amplitude to the n-quantum amplitude, 
the combinations in which the functional derivatives 

• With the identities which we now have at our disposal it ill 
strai,htforward to show that the theory of tree functions may 
be based on •• rather thaD G. One replaces Eq. (14.4) by 

il••flll+e:~:(S![,.+i~:~:)-S,;J 

Th! ~~~~il-~~1it~.:~ ~~~~J14i:! 
f:a~~ ~=\t~l~!t~~J:l:eww~ this rep1accment 

.--..-_(;;,.+e.S...- -GS•<•-•.:J- (G-GI.J$,.,. 
In View of (4.7), (!.11), (10.10), (14.3), and (17.11) thil equation 
is solved by 

Th~ ~tity il;~;-rll- vanishes at Infinity rapidlt enough 10 !:rt l\7~'!vr:~he::rC:~etthesis cu be reversed. rom (17.19) 

•-•··•~r.,.c..--.>-=Filtl*lr.,(il-+->, 
from which the iDvariance of (1'-2!) bmncdiately followt. 
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of this difference occur always add up to zero. These 
combinations, in order of increasing complexity, are 

(a;,;S,;+a;s .• )~, 

[ai,1,.S, 1 +2a',,;S. 1~o+a'S.ii.t 
+ (a'.,S,,+a'S.;,)G""S . ..,..t:IPo~", (18.8) 

etc. By making use of (2.2), (10.10), (17.26), and (17.31) 
one readily verifies in each case that these combinations 
vanish. It is not bard to show, in fact, that this is to be 
expected as a coronary of (14.10}. 

We close this section by recording the contributions 
of WctJ to the three- and four-quantum amplitudes: 

4>o~%f>o•(WctJ,iJ-"+3ti.I,G'""WctJ,-.I:+tq~o,G'-Wctl,..)=l"/Ja~"(tu~:~a®<+>'-i-3lu~t~~®C+)lJ'@C+lv-t,,ll 
+2t'I.,@C+l•Pt11~(of-)tPJrd@C+l•l), (18.9) 

4lo'9~~1(WctJ,ii.u+MJ...G""WctJ,"•'+4tq._G-Wcll.•l+3fu.J.ti,.G-"G"1WctJ,"+tu.t,.G-WctJ,,.) 
-fUp0~i,pg~I(Ji/l<l•n@C+l•"+4fuJ:••(MC+>-oP{i)C+lt"t,,1+34J .. @C+>-IJP~C+lt•t111.1:!+12tq,..,.@C+l•PJpq.fMC+lvt'41z®C+l"" 

+6~._,.@C+1APJ~C+lt'troi@C+Jnt1.,1@1+l-), (18.10) 

The corresponding diagrams when no invariance group 
is present are shown in Fig. 4. The grouping of the 
amplitudes into Feynman baskets is again evidenr. 
The task. of reexpressing (18.9) and (18.10) in the 
general case in tenns of G, C, c<+l, Cc+> will be left to 
the reader as a (rather lengthy) exercise. The reader 
may also enjoy discovering the simple rules of dif­
ferentiation which lead in a step by step fashion from 
Eq. (17.4), through Eqs. (18.3o), (18.9), and (18.10), 
to the lowest-order radiative correction to the general 
n-quantum amplitude. 

19. HIGHER-ORDER RADIATIVE CORRECTIONS. 
USE OF THE FEYNMAN' FUNCTIONAL 

INTEGRAL TO CONSTRUCT A 
CONSISTENT THEORY 

The functional derivatives of W ct> are represented by 
diagrams each of which has only a single closed loop. 

~{~·o·~'8'·'·~·'·~·,o·~~·~i?·,Al 
•t•(,.?+.,9·'·AH·• A ,,, 
i{~·· o•" ~·,.~ • .;g ... ~ .. *· .. ¢·~ 

... 9· .. 9·'·5hR·"~"·~·,.o 
''•lt'~''•R•P,'8'+'•0''•9•~.9 
'"'Ro''!.R·'-~''·£·,¢·'·R) 

·~+·9"·9· .. ~·~~· .. 9· .. 9·•·A 

'" 

·•· A·'I.~H·~·sh*·•·?h§ 
''·Ro·'·~h~·~"'R''k~)·t· .. ~ 

FIG. 4. Lowest-order radiative correction! to (a) the th~-
~ntum amJ'IIitude and (b) the four-quantum amplitude in 

lap=~l~~~~~a!:~=~~~~ 

Connected diagrams having two or more closed loops 
correspond to higher-order radiative corrections. A 
diagram having n-independent closed loops is said to be 
of the nth order. 

Consider the set of all connected nth -order diagrams 
which contribute to a given scattering amplitude. By 
repeated functional integration one may remove the 
external lines. The resulting DQCUflm dit~groms represent 
the nth-order contribution toW, which will be denoted 
byW<,.>· 

The basic topology of the vacuum diagrams and the 
nwnerical coefficients to be attached to them are the 
same for all field theories. For purposes of orientation we 
begin with the case in which no invariance group is 
present. The Feynman functional integral may then be 
used as a convenient formal expression for the vacuum­
to-vacuum amplitude: 

(O,oo!O,-oo)=-el"''"l, (19.1) 

W[9]=w[9]-w[O], (19.2) 

.,..,,_ j exp;(S[9+•J-S[~J-s:,[•J"l 
X-1[~+·~ (19.3) 

~-rt~·. (19.4) 

Here b. is a density which serves to define the functional 
volume element. It will be chosen in such a way as to 
maintain invariance of the theory under the variable 
transfonnation (15.5). 

It is not difficult to show that Eq. (19.3), when 
supplemented by the statement 

(0,= IT(A[+J)IO,-=)=r'•tOIJ A[•J 

Xexpi(S[~HJ-S[~J-S,,[~]') 

X.1[~H~. (19.5) 

yields the hie<uchy of Eqs. (12.20), (12.21), (12.22). 



16.2 QUANTUM THEORY OF GRAVITY. II tl31 

Thw, 

I 
GiiiJrpi(O,cojO,-oo) 

_,-.."'G"f(~(expi(S[•H]-S[•] ;w 

-s.,[•:WlA[•+<IJ)-s.,[.)P'expi(S[oHJ 

-s[•]-s . .c.~•)<~:[•+•Jf. 

The formal identity 

f ~{expi(S[•HJ-S[•]-S,,[•~~ !.;' 
XA[•+<I]}d<I=O, (19.8) 

combined with the condition S,,{rp]=O on the back­
ground field, suggests that the operator field equations 
of the theory may be written in the form 

T(S,,[o++J-i(lnA[o++J) ,< )-0. (19.9) 

On the other hand we expect that they may also be ex­
pressed in the simpler "classical" form 

I 
(19.6) o-s . .C•++J-s,,,w-s,.,,+'+' 

21 

6 
=Gi'-(O,cc I+'IO,-oo) 

i61P" 

- ,-<•IOIG"f(__!_w expi(S[•+<IJ-S[• J 
i&IJ" 

-s .• [•:WlA[•+.PJl+(W.-s ... [•:W<I'l 

X•xpi(S[•+4>]-S[•]-S,.[.~•)A[•H]r 

-;c••co.~ ro,-~)+(0,~ IT(.P'<I')IO,-~), {19.7) 

etc., in which functional integrals of total functional 
derivatives are set formally equal to zero. In fa.ct, 
Eqs. (12.20) ti al., can be used to derive Eqs. (19.3) 
and (19.5), showing once again that the technique of 
varying the background fi.eld is completely equivalent 
to (but of wider applicability than) more familiar 
methods employing external sources. 

Further algebra. yields 

+'+'-T(+'+J>"" -i8(j,s)<1H•iG+'i 

I 
+ 31s .... +'+'+'+ ... , (19.10) 

the manifest Hermiticity of which follows from the 
symmetry of the coefficients (bare vertex functions). 
Equation (19.10) will, in fact, turn out to be not quite 
right; it cannot be reexpressed in the form (19.9) and, 
moreover, it is not !ami-invariant under transforma­
tion of variables. However, we shall adopt h tentatively 
and then correct it later. 

The tenn in 4 in Eq. (19.9) ma.y be regarded as 
arising !rom the process of converting from ordinary to 
chronological products, and ma.y be computed on this 
basis. In rearranging factor sequences we need to know 
the commutator [+i,+'].47 For this purpose we take the 
commutator of (19.10) with +"'and find that the result 
is solved by 

[+',+'JaiG<i, (19.11) 

G•.;- G•i+G•i . .~:+"'+(1/2!)Gil,.~:1+~=+1+.... (19.12) 

The algebra is straightforward. Here we work only up 
to the order needed in discussing W C2l; more efficient 
methods of procedure will be given in the next section. 

-iG'""+iG'"" ~+'+iiGP1 ... T(+'+~-tG",,.c+''+ · · · , (19.13) 

N'+'- TC+'+'+') -iB(j,k)G+<•+'+i6(k,JI+'G+<i+iB(k,JI G+''+'+ie(J,k)+'G+"+i+'G+" 
-iG'""+'+iG'"''+I+iG+''+'+iG+•,,T(+'+')+iG+".•T(+'+'J+iG+''.•T(+'+') 

-G+ii,U''-G+J•.~u+···, (19.14) 

+'+'+'+'- T(+'+'+'+') -iG+''T(+'+~+iG+"T(+'+'J-G"'fG+"+iG+"T(+'+')+iG+'T(+'+')-G"''G'" 
+iG+"T(+'+')+iG+"T(+'+')-G"''G'''+ · · ·, (19.15) 
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where 8(i,j) is the temporal step function•8 

8(i,J)= 1 for i ;ll> j 

=0 for j::;.. i, (19.!6) 

These results permit us to reexpress Eq. (19.10) in the form 

0= T(S,;[.p+9])+!S,,i~<fiG+l'+ic+1sS,<ObcG+b'9"+iio+isS ... bcUu[T(+•t")+ic+cd) 
+}ic+iaS ,abtJ"H•S .• ,.tJ+"[2T(9•+d)+iG+c<l+iG-""]+ • • ·} +tS ,OJu{ 3iG+i'f1+3iQ+i<>S.ab.G+b'T(+"91) 

- G+~S.abP'""'(G+fl+G-fl)+ · • ·} +liS,,:i~<i ... o+i'T(+'+"')-tS,;JklmG+-J'"G+b"+ · · (19.17) 

The terms following T{S,.:[r.o++J) in this equation exp(iw(l)[IP]) 
are almost, but not quite, expressible in the form 
-iT(IlnA[IP++]}.;) of Eq. (19.9). What is missing 15! exp(ijS,;;tJ>i~(detc+)-llidqJ 
is a term having the following structure: 

iJS,,1,G+iaS.ab.c+b•S .• 1.1J+''G•d. (19.18) 

If this term is added to Eqs. (19.10} and (19.17) we find 

A[<P]= (detG+)-112 exp( -liS.;;,G+'t(;+JmG-hS,t.,.n 
-iiS,IjJ:pt-'i(;+kl+···). (19.19) 

A[lf'+4>]= (detc+)-112 exp( -!c+'JS_,Jk¢~: 

-iG+'"S, .. b~:c+ 0iS,;Jt4Ni--l-G+'iS,Ijl<t41"4i 

· ·- iiS.;;.tG-H1G+-""G-J:"S,t ..... 
-jiS,;;kp!-iJGH1+ · ·). (19.20) 

Expression {19.18) is the first of an infinite sequence 
of correction terms, which must be discovered by 
laborious computation. These terms maintain the formal 
Hermiticity of the field equations [e.g., (19.18) is real] 
but are not mathematically well defined. Like the terms 
of A they involve Green's functions with coincident 
arguments and hence cannot be properly discussed 
apart from renormalization theory. However, they may 
be regarded as possessed of certain formal properties. 
Owing to the kinematics of the Green's functions they 
depend only locally on the fields, and in the case of 
scalar fields with nonderivative couplings they may be 
regarded as vanishing by virtue of the commutativity 
of field components at the same space-time point. 

We are now ready to compute W {2l· We first reexpress 
Eq. (19.3) in the form 

,.-,.,1 .. 1 = (expiw(ll[O]l{O,«> IT (expi[(1/3!)S . .-Jk41'•F+~ 
+(1/4!)S,oJ~:t+t+'+k+'+ ... J 

x~T•.OIO,-oo)m. (19.21) 

Here A'[rp,f)] is ll.[rp+9] with the factor (detc+)- 112 

remow•c!., and 

(O,oo I T(A[9]) IO,- oo )m 

=[oxp(-iwm[O])] J A[o] oxp(i!S,,,<I'O') 

X(detc+)-112dq,, (19.22) 
"The step function need not be defined for space1ike separa: 

tiuns of i and j but must be handled with care when the two 
space"time points coincide. Fortunately it disappears in the final 
forms of Eqs. (19.13), {19.14), and (19.15) 

(detG)ll2 

=Z(detc+)l/2' 
(19.23) 

where Z is a numerical constant determined by the 
lattice spacing used in the definition of the functional 
integral, but independent of the background field. 
The Green's function G makes its appearance in (19.23) 
owing to the Feynman boundary conditions assumed 
in the Gaussian integral. 

Writing 

W='!;_
1 

We .. ), w=~1 wc .. l, (19.24) 

W(,.l[~p]=wc,.>[IP]-wcnJ[O], (19.25) 

and making use of (19.20), (19.21) and the hierarchy of 
equations generated by 

(O,oo IT(expiX,+')IO,-oo)m 

=exp(iWciJ+!iA;X1G1J), (19.26) 

we find 

detG detGo+ 
Wm=-tiln---, 

detGodetG+ 
(19.27) 

Wc2l=-iJS,,1~:(G''Gi"'Gkn+ 2c+"G+i"'G"'"h 

-3G''G+i"'(;-l<n)S,l'",.-f(G•i-G+•i)S,tliG•is,J ..... 

X (G"'"-G+"'")-fS.;;u(G'i-GH,)(G"i-GHi) 

minus the same terms evaluated with 11'=0. (19.28) 

Equation (19.27) is observed to agree with (16.27c) 
for the case in which no in variance group is present. 

Expression (19.28} for W(2h on the other hand, is 
still not quite right; it fails to be invariant under the 
variable transformation (15.5). To find out how it 
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changes we make use of the transformation laws 

B<P" O.p~ 
S,o/=S,cbiJ~P''O<P'i, 

from which terms inS,,. have been omitted owing to the 
fact that the background field obeys the classical field 
equations. These laws permit us to infer [cf. (15.8)] 

whence it follows that W (tl is invariant. For W t2h on 
the other hand, we find, by-- a straightforward but 
tedious calculation, 

1 oz..,. Orp'i O<P'J 
WmT<P']-W(2l[<P]=-S.<>~>li""G~~---

24 6vl%.p'Ja<P-~ocp• 

1 02<P" 02<P~ O<P'' lJ<P'i 8v:/~< Orp'l 
+-S ... b------- -Gc•{;ril 

48 D<P''Ov:!i O'P'I<O<p' 1 8'P" Orprl Or.p• OIP' 

minus the same terms evaluated with rp=O, (19.33) 

showing that Eq. (15.1ta) is violated. 
The violation, however, is not very great. Relative 

to the large number of terms involved in the caJcula­
tion and the large amount of cancellation which takes 
place between them, expression (19.33) represents a 
very small residue. One suspects that it can be easily 
eliminated by the addition of a suitable term to (19.28). 
The desired term should be real, so as not to disturb 
the vacuum-to-vacuum probability, and should be built 
out of quantities, such as Green's functions and bare 
vertex functions, which already exist in the classical 
theory. It is not difficult to verify that there is only 
one second-order expression with the necessary prop­
erties, namely 

Y c2J = (1/48)S,,i~<G"GfootG+l:"S.z,.. 
- (1/48)S,ij~:~c~·~G,/"'Go+"'-s.,,. .. ~. (19.34) 

We therefore conclude that the final correct forms for 

W <2l and~ (to second order) are 

W <:l= -tfS.o;k(Gi!Gfor>Gh+Zc+;lfJ+~kn 

-3G''c+imG-.m-lG"C;...c+k")S.z,... 
-i(Gii-GH')S.;ikG"'IS.z,..,(G''"'-c+"'") 
-iS.;;kz(G'i-c+ii)(Gk'-G+kl) minus the 

(19.29) 

same terms evaluated with 1"=0, (19.35) 

.1[1" ]= (detc+)-112 exp( -fiS.iitG+"G+fmG-k"S,z .... 
+(1/48)iS.;;~:C"G.imfJ+bS, 1,.., 

-iiS.;jtzGH.iGH1+···). (19.36) 

The introduction of the term (19.34} brings a qualita­
tively new element into the theory. It adds to the 
operator field equations {19.10) a term of the form 
T(Ym.;['+'+.j~J) which, unlike {19.18), depends non­
locally on the fields and is nonvanishing even for scalar 
fields with nonderivative coupling. This implies that 
within the framework of local field theory there exists 
no covariant ordering of the factors of the operator field 
equations which maintains form-invariance of the theory 
under arbitrary (local) transformations_ of variables. 
Such a conclusion, however, presupposes a definition of 
"locality" which, because of its formality, is perhaps not 
very useful. Of greater importance are the conditions of 
analyticity on scattering amplitudes which ought to 
bold if certain conditions of causality (conventionally 
asswned to follow from "locality") are to be valid. 
The "derivations" of this section are purely heuristic 
(since one is dealing with the unrenormalized fields) 
and there is evidence that the surgery effected by 
standard renonnalization techniques (which, when 
applica.ble, is implicit alSo in dispersion theory) removes 
from the theory precisely the formal nonlocality repre­
sented by Y(2l· We shall return briefly to this question 
in the next section, where altern~ive, more systematic 
methods for treating the higher-Order radiative correc­
tions are discussed. 
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20. NONCAUSAL CHAINS. FEYNMAN BASKETS 
FOR OVERLAPPING LOOPS. GEm!RAL 

ALGORITHM FOR OBTAINil'IG THE 
PRIMARY DIAGRAMS TO 

ALL ORDERS 

If, in Eq. (19.3), the density functional A is set equal 
to unity then all the terms drop out of Eqa. (19.27) and 
(19.35) save those which involve the Feymnan propaga­
tor G only. The resulting fUnctional will be denoted by w, 
W= -li In detG--hS,iJ.G1'GJ'"GhS,,... 

-j-G'iS,o;i!J~<1S,I,.,,G'"'•-j-S,qliG11G.W+ · · • 
minus the same terms evaluated with ¥'-0. (20.1) 

The basic topology of vacuum diagrams is already con­
tained in the terms of this series. Each term corresponds 
to what will be called a primory diagrcm, composed of 
bare vertices and Feynman propagators only. The 
primary diagrams of orders 1 through 3 a.re shown in 
Fig. 5. In these diagrams the terms with ¥'""'0 are to 
be understood as already having been subtracted out. 
In most applications one is not interested in the 
vacuum-to-vacuum amplitude itself but only in its 
functional derivatives, which yield the radiative cor­
rections to scattering amplitudes. The tenns with 
~=0 make no contribution to these amplitudes, being 
essentially constants of integration. Therefore, no 
attempt has been made to represent them pictorially. 

The terms of Eqs. (19.27) and (19.35) which are 
missing from (20.1) are topologically similar to the 
primary diagrams. They differ only in the replacement 
of various Feynrnan propagators by(;+-, G-, and G. The 
question which presents itself is how these replacements 
are to be made in the general case and with what 
coefficients. 

It is evident from the analySis of the preceding sec­
tion that the diagrams which cause the most trouble 

~td8-t00-t00 

~ .. ·H:3 ·~· c:x:::x:::>•m• oe 
+ll,go+il©+i'CXD 
+ale-o+tl oo-o 
•k•c€ •J.• 0 •;k• § 

+*ICD-O+•Iooo 

are those which contain overlapping loops Uust as in 
renormalization theory). Let us therefore consider first 
the simpler diagrams in which no loop touches any 
other loop in more than a single point. By referring to 
Eq. (19.35) and to Figs. 2, 3, and 4 it is not difficult 
to see that, as far as these diagrams are concerned, the 
correct expression for W is obtained from that for lf 
simply by removing the ntmemual chains from all loops. 
By "noncausal chain" we mean any cyclic product of 
advanced (or retarded) Green's functions connecting a 
sequence of points of which the last is equal to the first. 
Such cyclic products necessarily vanish except when all 
the points coincide, and hence they depend only locally 
on the background field. In the case of scalar fields with 
nonderivative coupling they may be formally set equal 
to zero. In the general case they must be explicitly 
removed." 

The diagrams with overlapping loops cannot be 
treated so simply. Here the difficulty is twofold. First, 
the noncausal chains enter in a more complicated way 
and, except in the case of W (th there is no unique way 
of removing them. Second, the removal of noncausal 
chains by itself does not suffice to lead to invariant 
amplitudes. 

The situation may be described more fully thus: At a 
certain point in the process of removing noncausal 
chains from a given primary diagram one must stop; 
no further noncausal chains remain. At this point the 
diagram no longer contains closed loops composed of 
Feynman propagators only. At least one segment of 
every loop consists of a "free" propagator GC+I or GH. 
That is to say, the removal of the noncausal chains 
"breaks open" all the closed loops, and the result is 
representable as a sum over tree diagrams with all 
external lines on the mass shell. However, the particular 
trees which a.re obtained, and the coefficients attached 
to them, generally depend on which noncausal chains 
are removed first and on what orien14tion one chooses 
to assign to them. In the more complicated diagrams 
there is not even a unique way of averaging over 
orientations. 

One may nevertheless ask whether there is a "correct" 
way of removing noncausal chains. The answer is yes, 
but it must be determined separately in each individual 
case by a computation which is as complicated as those 
of the preceding section; no simple general algorithm 
has so far been found. Moreover, even when the non­
causal chains have been properly removed the resulting 
tree diagrB.11lll cannot yet be assembled into Feynman 
baskets. "Nonlocal terms" beginning in lowest order 
with Y<1>o have also to be discovered and added. 

To gain an appreciation of the complexities which 
arise the reader may try his hand at decomposing W (llo 

remembering to take into account the contribution 
which Yet) makes in this order, through its presence in 

• For WCII this means subtracting lndetc+ frorn In detG; the 
latterisn:presentedb)'thelimplecircleinFig.S, 
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the density functional t.. We shall content ourselves 
here with the decomposition' of w(2)· 

In this case it turns out that although the removal 
of noncausal chains can be carried out in various ways 
the end result is always the same. Thus the three prop­
agators of the first diagram for lft2J in Fig. 5 rr.ay, 
with the aid of Eqs. (9.17), be decomposed as follows: 

G®G®G-G®G'®G-+G-®G'®G+G'®G®G­
-G-®G+®G--G+®c+®G-+GH®G®G<-> 
+G<+l®G<+l®G-G®Gt+l®GH+GH®G<+l®G<-> 

-G<H®G<+l®GH. (20.2) 

The first five terms on the right of this equation yield 
noncausa.l chains. If they are subtracted one obtains 
the first term on the right of Eq. (19.28). We have 
already seen that this expression is not quite right; we 
must add the quantity Yt2h obtaining (19.35) as the 
correct full expression for W (2)· It is then straight­
forward to verify that W ''' has the following decom­
position into Feynman baskets: 

IV(~)= -ft,;.t,G<+>•iG<+>.t'+(l/48)l;;~<+wc<+>ftn. 

XG<+>knt~m.,.--fst;ikG<+>•JGH>imG<+ln.tt 1,,. minus the 
same terms evaluated with .p= 0, (20.3) 

a result which admits of immediate extension to the 
case in which an invariance group is present: 

IV<~>= -fl;JH@<+lii@<+Jkl+ (1/48)t;;k@<+lil@t+l.im 
x@<+lknt,,,.-y\-t;;k@<+lil@(+)im@<+)inktlmn minus 

the same terms evaluated with t,~~=O. (20.4) 

Several observations may now be made. First, the 
possibility of decomposing the vacuum-to-vacuum 
functionals into Feynman baskets is closely related 
to unitarity of the S matrix; unitarity statements such 
a.<; Eq. (13.14) involve sums over tree amplitudes of 
precisely the form (20.4).00 Second, although the require­
ment that the theory be invariant under transformations 
of variables has Jed us to functionals which decompose 
into Feynman bMkets, it is clear from the tree theorem 
(14.26) and the invariance statement (15.10) that we 
could instead have started from de<::omposability itself 
a.<; a criterion for the discoVery of "correction" terms 
~uch as Y (2Jt and thereby obtained vacuum-to-vacuum 
amplitudes which are not only invariant under trans­
fomlations of variables but group-invariant as well. 
Evidently the various consistency requirements of the 
theory fit together in an interlocking fashion, and it 
appears that the imposition of one will yield the others 
also. This makes it possible to consider alternative 
approaches to the theory of radiative corrections. 

One such approach is arrived at by reexpressing 
(20.4) in terms of the manifestly covariant propagators 
G, c<+>,C,G<+l. UsingEqs. (4.2), (5.6), (17.11), (17.19), 
(17.26), (17.27), and (17.31) one finds, by rather 
intricate and tedious algebra, that (20.4) appears as 

"l An explicit verification that (20.4) satisfies unitarity has 
been carried out (unpublished). 

w~~~·-l8+i0+* 0+*0 
-i8+i0+ ~0+t 0+*0 
-iOO+t 0-()+~ 0-(.) 

-i()..()-i ()-()-~ ()-{_) 

-i()"(~) -i 00 
·.W9-i0 

FIG. 6. Second-order vacuum diagrams when 
an invariance group is present. 

the sum of the 23 terms which are depicted in Fig. 6. 
It turns out that th&e terms can alternatively be obtained 
from the primary diagrams of Fig. 7 by removing non­
causal chains and adding the nonlocal "correction" 

Ym = (1/48)S.i/kGi1GflnG+knS.,,,.- (1/24) V (<ul~ 
X (G'C+)<d+G'<-)a&)(tC+lJJ'I'+G<-JJJ.,)G+'iV (.,j)& 

- (1/24) V (a<lii(Gt+laa+C<-la&)<i:+~,.G•w ,.,;,, 
- (1/24)V '"'>~+"1(C<+>JJ,.+C<-lii'I')G•w('l'na, (20.5) 

which is a generalization of (19.34}. In this case the 
noncausal chains must be removed in a maximally 
symmetric manner which gives equal weight to both 
dotted and solid lines and to the various distinct orienta. 
tions of the diagrams. 

Now it is a remarkable fact that W r1Jt as given by 
the primary diagrams of Fig. 7, is already group­
invariant as it stands. It is not only invariant under 
group transformations of the background field, which is 
obvious from its manifestly covariant construction, 
but it is also -y-invariant as well. The latter assertion 
may be verified by a straightforward but tedious com­
putation which makes use of Eqs. (4.2), (4.3), (4.10), ~ 1 

(6.11), (14.13), (16.28), (17.26), and (17.31). 
This result shows that combinations of tree ampJi. 

tudes are not the only group-invariant quantities in 
the theory and suggests that the method of decomposing 
diagrams into Feynman baskets, and the formal com-

-tOO+i O<) 

-t ()-<J- i ()() 
FIG. 7. Primary diagrams of order 2 when an invariance group 

is present. (Dashed lines without arrows represent Feynma.n 
propagators {;for fictitious quanta.) 

11 Equations (4.10) are never needed except when dealing with 
primary diagrams, 
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plica.tions which go v.ith it, can be avoided. Indeed in they never begin or end on solid lines. (2) In addition. 
conventional field theory one works with the primary to the bare vertices S,. the only vertex which is needed 
diagrams from the beginning and never bothers to is V1• 01. Vertices such as R• •. ('f,,R11j at which more 
remove the noncausal chains. In the case of non~ than one solid line meets a dotted line never occur. (We 
overlapping loops it is easy to see why one· nevertheless/ shall see la.ter that they do not even occur when external 
gets correct results. It is a standard procedure in m~ li:Des a.re inserted into the vacuum diagrams.) (3) The 
mentum-space calculations, after.fl all terms of an solid lines which enter a. given fictitious quantum loop 
integrand have been brought to a common denominator all do so with the same orientation around the loop. 
of the form (k1+2p·k+A .... iQ)•, to perform a rotation (Remember they enter obliquely.) This means, for 
through 000 in the RfJ plane a.nd thereby to convert example, that the combination V c.n,C'"Q'G•iV ,,.,~,, 
from Minkowski space to Euclidean space for the sub- does not appear in Fig. 7. 
sequent evaluation. When the integral is convergent the It is remarkable that the condition of 'Y invariance 
procedure is legitimate, but when the integral diverges alone suflices to determine all the higher-order radiative 
a part-the arc at infinity-is lost which can be shown corrections. By going through the computation for 
to correspond exactly to a none&usal chain. Moreover, 1f (IJ one is easily convinced tha.t the same procedure since the arc is at infinity in momentum space its coA- Jves unique results to all orders, with no ambiguity 
tribution is necessarily "local" in space-time and would abou~ coefficients. However, it is extremely tedious to 
.in ·any case be removed by renormalization, e.g., with carry out the ComputationS required. order by order, 
the use of regulators. . and one na.turally asks whether or not a. short cut can be 

In the case of overlapping loops •mslocal renormaliza- f2_1,1D.d. Fortunately it can. 
tions, i.e., renonnalizations lllilbits momentum sub-- "'"One' introduces a flctitious system descnDed by the 
integrations, must be performed in order to get rid of action functional lFv+'"+'+F.,q••tf, where the field 
the well-known overlapping divergences. Although a +'is of the commuting type and the fields~· and~··, 

~~~~~d ~~~r:fis~~~:!~::V=ce~e!: ~\t=tic==:t;:!.iho~e~= !!~~~ ft~!~ :: 
too renormaliza.tion absorbs the "correction" terms, formulas 
which now include not only noncausa.l chains but also (20.6} 
the "nonloca1" quantities Y C'lh etc.. One expects that 
the decomposition of radiative corrections into ~eyn­
man baskets is in effect replaced by analyticity state­
ments, and that the unitarity of the S matrix is secured 
by the famous Cutkosky rules.11 

As a working procedure we. shaD therefore as&WD.e, 
just as in conventional field theory, that it suffices to 
deal with the primary diagrams alone. Altbou'gb much 
work remains to be done to establish this assumption 
with complete rigor, it is then quite easy to construct 
a manifestly coviriant quantum theory of gravity 
(and/or the Yang-Mills field) which is unique to all 
orders of perturbation theory. One has only to discover 
what diagrams have to be added to those of Fig. 5, 
etc., in order to obtain ')'-invariant vacuum-to-v8.0J.um 
amplitudes, and this problem bas been completely 
solved. 

The solution of the problem for the case of lf c11 is 
given in Fig. 7. The diagrams of this figure can be dis-
covered in the following way." One adds to the lf ttl 
diagrams of Fig. 5 other topologically similar diagrams, 
involving the fictitious quanta in an possible ways, 
each with an arbitrary coefficient, and then adjusts the 
c:oeffi.cients so that the total expression becomes in­
variant under changes in the 'Y'I. In the process one 
discovers the following facts, which bold to all orders: 
(t) The fictitious quanta always occur in closed loops; 

• R. E. Cutkosky, J. Math. Phy&. 1, 429 (1960). When the 

==~~:1~eo~~~~ka+~~~:.w~ 
•B. S. DeWitt, Phys. Rev. Lettcnl2, 7~ (196&). 

oxpi'"[~J- (expitl>.,,[O]}(det'Y)-"' 

X (O,oo I T(oxpi[V, • .,,ot'•+'ol'+ (1/3/}S,u•+'+'+' 

+(I/4!}S.u• .. '+'+'+'+· · ·JliO,-oo }.,,, (20.7} 

where the subscript (1) indicates that the evaluation is 
to be carried out with reference to the fictitious system. 
The vacuum-to-vacuum amplitude of the fictitious 
system itself is to be understood as defined without the 
removal of ac:a.usal chains. Thus 

(20.8} 

lfm[fP]=tllm[fl']-t.l)m[O], (20.9} 

(detG)lfl(detj)-111 
expit.l)cu[fP]= detC ' (20.10} 

with no factor (det0+)/(detG+)1' 1 appearing in (20.10). 
The factor (detf)-111 or its inverse is inserted into 
Eqs. (20. 7), (20.8), and (20.10) so as to make tl>m 
j-invariant [see Eq. (16.29}]. 

The anticommuting character of the fields tk'" and 
q._ implies that the jiailimu quanta rwe Jermiam." 
It is this property which enables them to play a com· 
pensatory role in the theory. For example, it is what 
causes detC to appear in the denominator rather than 

"The usual relation betweBD spill aud ltatiltka obviously 
need not apply to theM quaDt&. 
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the numerator of Eq. (20.10). n It is also what restricts 
the fictitious quanta to appearing only in closed loops. 

The explicit evaluation of expression (20.7) is carried 
out with the aid of the hierarchy of equations generated 
by • 

(detjo)111 
(o.~ 1 T (exp(O.o+'+i>* .ol"+it*•>.J)IO,-~ >"'---

. (detj)'ll 

-exp(iW"'HiX.X,G''+O.*.J.,C.'), (20.11) 

3'..,=Gt'..RuBP"..,+Vc.•l_,.,, (20.13) 

<R'.•R'.+R' •. #•R'.[~+9]. (20.14) 

We next place primes on all the field S)'D.lbols X, ~. 
1/1, p• in (20.12) and (20.13). This is purely a formal step 
which changes nothing. However, we ma.y regard it as 
corresponding to a.ctual changes in the integration 

-*· o-o-o -•· o-<>-0 

where the ~ are ordinary c-number variables and the 
>.., "A.• are variables :from an anticommuting number 
system. M The determination of the higher-order primary 
diagrams then becomes a straightforward exercise. In 
Fig. 8.we show, for example, the diagrams which must 
be added to those of Fig. 5 in the case of lf Ill• 

The proof that formula (20.7) yields -y-invariant 
vacuum amplitudes to aU orders may be carried out by 
first rewriting it in the form 

We then choose these changes in the following way: 

ax·-tr-'"'li'•.X', (20.16) 

W-<R'.W. (20.17) 

61/1"= -s"'m',("r,pl',.- v(llh"~'N-", (20.18) 

(20.19) 

at•- -9'(iR.a,.-11•;,,H"Y#;,)g'•, (20.20) 

where S is the Feymnan propagator!i7 for the operator 
ff, and the 3yij, 8-y., are to be regarded as arbitrary 
infi.nitesimals. 

We now compute the effect which these changes 
produce on the numerator and denominator of the big 
integrand in (20.12). By making use of the identity 

V(•lllllm.",.-V<,.o.e<R'.=c'.,.ff,_ (20.21) 

and the fact that S[v+l/l'] is invariant under (20.17), 
wefi.nd 

a(ti'.,XOX'+iF.,.,...,.,+(1/3!)S.v ... ~'+···) 
-;.,x•!X'+RI'R,_.,.'W-ix•a;;.,x• 

+9'R,•a!'lf,.. 
-ix•a;;.,x1+U'R,.!i'""'*'R,rlfl' 

+9'R,•R•.a,..,.,.,, (20.22) 

a(lf.H*..,., 
=ff~+ff..W*•&./J"+Y,*•v<•i>~~' 
-~·-.. •.a,.<;R;rlf/'. (20.23) 

But these are just the changes which these quantities 
would suffer under the changes 4-yij, 8-y., in the -y's. 

MSec J. Schwinger, Proc. Nat. Acad. Sci. U.S. 48,603 (1962). 

~r=$;c:n~::! ~~~~o!ijta~~~ 
of rtof~L¥1Jl transformations of variables. Transformations oi this = ~:U:e~ofm=~:-n boundary omdi-
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Therefore, if we can show that the functional Jacobians 
of the transformations (20.16), (20.17), (20.18), and 
(20.19) cancel in (20.12), it follows that (20.12) is 
')'-invariant. 

These Jacobians are obtained by first computing 

ax'" 
-;;;=8"~+i"Y1"70.Y,.,, (20.24) 

This establishes, in particular, the legitimacy of the 
scale transformation 

'Y<i->-'Y<i• -y,.!J-A"iall· (20.31) 

Under this transformation we have 

(20.32) 

and in the limit X- 0 Eq. (20.12) reduces to the con­
ventional but ambiguous formula 

&I'' . . . 8(!!") 
-=8'i+R•,.,i8~"'+ffi•.,--, w w (20.25) 1 

'xpi"'[•]~Z I oxpiGt;,,P';>i ..,. 
&It"= 0"11- S",.ffi,.,..(o-y,.1R18- V <lo'liJo~a), (20.26) 

(20.21) 

+O~V <o9Jh91". (20.28) 

Invoking Eqs. (4.10) we then get 

8(x',<l') 8(8!•) 
--= l+i tr(.Y'li.Y)+R,..,,,.&t"+ffi',.--
8(X,¢) &/' 

= 1-<R,.,.Oy;1Ri~t91l<>+ffi'.,O~V ~>h9""', (20.29) 

8(•1/,>f'') 
O(f,l/1*) = 1-S"6ffi.,.,(O··fiiRi,.- Vc,.;> .. &fr)+c",...Ot'~' 

O(x',¢') 
~--. (20.30) 

8(x,0) 

Since the latter Jacobian is independent of 1/1" and!/!*" 
it can be removed from the integral in the denominator 
of (20.12), whereupon it cancels with the Jacobian for 
the X and q, integrations. The 'Y invariance of formulas 
(20.7) and (20.12) is thus proved, 

(20.33) 

where 

(20.34) 

Expression (20.12) evidently removes the ambiguity 
and may be regarded as the definition of the integral 
(20.33) when an invariance group is present. 

There remains only the question how to insert ex­
ternal lines into the primary vacuum diagrams. When 
we dealt with W instead of W the insertion was ac­
complished by simple functional differentiation. Now 
that the noncausal chains are left unremoved and no 
correction terms are added we must proceed some­
what more carefully. 

We have remarked earlier that expression (13.6) 
for the S matrix in terms of chronological products 
holds even when an invariance group is present. We 
were nevertheless forced to use it in a very circuitous 
manner, by restricting it to the case in which no group 
is present and then generalizing its c-number con­
sequences, because we previously had no direct way 
of calculating the chronological products. Now we have. 

Following the example of Eq. (19.5) (but ignoring 
the density functional I:!. since we are here dealing with 
primary diagrams) we may set 

I oxpi(\1.,x•x'+!F,,,P'q,i+(1/3l)S,;;,P'<P'<P'+ ·) 
(o,~ I T(A[OID,- ~ J~ <xp(-iw[o])Z' A[<l] dxd¢. 

f exp(i\J',.pt/l*<;ftfJ)dY,d!/1* 
(20.35) 

Then Eq. (19.6) is replact!d by 

(O,oo lo'IO,- oo)~"p(-;,I{O])Z'0\±"1[( -F;,P'+~) 
expi(!.:;"IIX"'XfJ+!F,,..¢14>"'+(1/3!}S,Imn¢1¢m¢"+ · · )] 

X dxdq, (20. 36a) 
J exp(iO .,>f'">f')d>f#' 
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where we now use the propagator ®::1: in place of G in front of the integral so as to obtain correct external-line wa vc 
functions for the S matrix. 

The only vertices which get inserted by the factor in square brackets in (20.36b) are the bare vertices S,. and 
Vc.nll· Therefore (O,co 1+']0,-ao} may be expressed in the compact form (12.20), but with G replaced by®::~:., 
provided the symbol 8/IJrp is no longer taken literally but is Uitderstood to yield GSaG when acting on G and Sn+l 
when acting on S,., to have no effect on V (ori),lt, a.nd to insert (in all possible ways) into any fictitious quantum loop 
merely one more vertex V (ai)l having tM same orientation as all the other 'DeTlices alruvly in the loop. 5 ~ With this 
understanding it is easy to see that (20.35) then yields also Eqs. (12.21), (12.22), and (12.23), with the modification 
G- @:i: applied to all external lines. Chronological product amplitudes defined in this way may be used directly 
in (13.6} to calculate the S matrix. 

The consistency of these simple rules with previously obtained results is readily checked. For example, if non­
causal chains are reinserted into Figs. 2(b) and J(b) the resulting primary diagrams for the lowest-order radiative 
corrections to the one- and two-quantum amplitudes are precisely those obtained by the pre.~ent prescription. We 
note in particular the sufficiency of the vertices S .. and V <•Olll and the uniform orientation of the latter around any 
fictitious quantum loop • 

., It will be noted that the operaton ata~, when redefined in this way, are still commutative. 
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The basic momentum-space propagators and vertices (mcluding those for the fictitious quanta) are 
given for both the Yang-Mills and gravitational fields. Thete propagators are used to obtaia the crou 
sections for gravitational scattering of two ICillar particles, sc:attering of gravitons by scalar particles, 
graviton-gravitoa scattering, t~graviton annihilation of scalar-particle pairs, and graviton bremsstrah­
lung. Special reaturu of these cross sections are noted. Problems ariliDg in renonnaliation them:y and the 
role of the Planck length are discussed. The gravitational Ward Identity is derived, and the structure of 
the radiatively corrected 1-graviton vertex for a scaliH' particle-is displayed. The Ward identity is only one 
of an infinity of identities relating the many-graviton vertex functions of the theory. The need for such 
identities may be eliminated in principle by computing radiative correction• directly in coordinate space, 
115ing the theory of manifestly covariant Green's functions. Aa an example of such a calc:ulation, the con­
tribution of conformal metric ftuctuations to the vacuum-to-vacuum amplitude is summed to all orders. 
The physical significance of the re.normaliution term• is diiCUISed. Finally, Weinberg's treatment of the 
infrared problem Is examined. It is not dillic:ult to show that the 6ctltious quanta contribute negligibly to 
infrared amplitudes, and hence that Weinberg's uae of the DeDonder gauge is j111tlfi.ed. His proof that the 
infrared problem in gravidynamiel can be handled just u in electrodynamics is thereby made rigoroUll. 

1. INTRODUCTION 

1Nma~!~:i=0a=~= ~~isu::r~::~ ~:;; 
of gravity were developed, one based on the so-called 

canonical or Hamiltonian theory and the other on the 
manifestly covariant theory of propagators and dia­
grams. So far no rigorous mathematical link between 
the two has been established. In part this is due to the 
kinds of questions each asks. The canonical theory 
leads almost unavoidably to speculations about the 
meaning of "amplitudes for different 3-geometries" or 
4'the wave function of the universe." The covariant 
theory, on the other hand, concerns itself with "micro­
processes" such as scattering, vacuum polarization, etc. 
Some of the questions raised by the canonical theory 
were explored in I. In this third and final paper of the 
series we examine some of the consequences of the 
covariant theory. 
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