in would reasonably be expected from statistical ruations.
I: was estimated from Fig. 1 that at 240 days after , ation the long-lived activity contributed about sforth of the total gamma-count. Even if the mical separations were only 50 percent efficient so at this contribution was reduced from one-fourth to ereighth, it was calculated that the counting rate in should change by about 20 percent in two aths. The absence of such variations in any of the $\pi$ samples was considered as proof that the longnel activity was not carried by any of the other ments and must therefore be associated with a - mm isotope.

The evidence for the presence of $\mathrm{Ce}^{120}$ consists in : The existence of a half-life of greater than 120 days the photon component of the irradiated cerium, (2) - treater contributions of soft radiation corresponding 1-nays following $K$ capture in this activity, and (3) : impossibility of separating the activity chemically a cerium, by removal of the most likely impurities.

## III. ESTIMATE OF CROSS SECTION RATIO

An estimate of the ratio of cross sections of ( $\mathrm{Ce}^{238} / \mathrm{Ce}^{40}$ ) should now be possible from the fact mentioned above, that at 240 days after a 30 -day irradiation the counting activity of the long-lived gammas was one-third of that for the short-lived activity which Shepard estimated to occur in 70 percent of the disintegrations of $\mathrm{Ce}^{141}$. Then, estimating the counting efficiency for $\mathrm{Ce}^{129}$ radiation to be twice as great as that for $\mathrm{Ce}^{141}$ because of the larger fraction of x-rays of about 30 kev energy, ${ }^{8}$ the ratio of the disintegration rates $139 / 141$ at this time would be 0.12 . Using the half-life values of 140 and 28 days this ratio would have been $1.1 \times 10^{-4}$ at the end of irradiation. For a 30 -day bombardment, and using the isotopic abundances of 0.250 and 88.48 percent given by Ingham, Hayden, and Hess,' the ratio of the cross sections was calculated to be: $\sigma(138) / \sigma(140) \approx 1.4$.

[^0]
# Variational Principles for Scattering Processes. I 

B. A. Lipplann<br>Nucleonics Division, Naval Research Laboratory, Washington, D. C.

AND
Julian Schwinger
Harpard Universily, Cambridge, Massachuselts
(Received April 10, 1950)


#### Abstract

A systematic treatment is presented of the application of variational principles to the quantum theory of scattering.

Starting from the time-dependent theory, a pair of variational principles is provided for the approximate calculation of the unitary (collision) operator that describes the connection between the initial and final states of the system. An equivalent formulation of the theory is obtained by expressing the collision operator in terms of an Hermitian (reaction) operator; variational principles for the reaction operator follom, The timeindependent theory, including variational principles for the operators now usel to detcribe transitimas, emerges from the time-dependent theory by restricting the discusson to stationary states. Specialization to the case of scattering by a central force field establishes the connection with the conventional phase shift analysis and results in a variational principle for the phase shift. As an illustration, the results of Fermi and Breit on the scattering of slow neutrons by bound protons are deduced by variational methods.


## I. INTRODUCTION

$\$$ ITHOUGH variational methods have long been 1 applied to cigenvalue problems in many fields of : in 6 , no systematic use had been made of variational -atures in connection with scattering processes until - ;artixal 1942-1946 when variational techniques; ${ }^{-}$6 uthers, were extensively employed in the solution intronagnetic wave guide problems.' Variational viciations have also been devised for the treatment
Vers on Lectures by Julian Schwingor: Discontinuitics in "-r.ties," prepared by David S.. Saxon, MIT Radiation -urtury Rejort, Veloruary 1945.
of neutron diffusion, ${ }^{2}$ acoustical and optical diffraction, ${ }^{3}$ and quantum-mechanical scattering problems. ${ }^{4}$ Indeed,

[^1]such methods are applicable in any branch of physics where the fundamental equations can be derived from an extremum principle.

It is the purpose of this paper to describe the quantum mechanical time-dependent scattering theory and its variational reformulation. As a simple illustration of these methods, we consider the scattering of slow neutrons by protons bound in a molecule. This was first discussed by Fermi ${ }^{5}$ in terms of an equivalent potential used in conjunction with the Born approximation. A more exact integral equation treatment was given by Breit, ${ }^{6}$ with quite small ensuing corrections' to Fermi's theory. We shall show that the results of Fermi and Breit are easily derived from a variational treatment. Although one could consider, without difficulty, the, scattering by any number of nuclei, the discussion will be restricted to the spin-dependent scattering by a single proton in an otherwise inert molecule of arbitrary mass. An extension to two protons, and in particular to the hydrogen molecule, is contained in an accompanying paper by one of us. Also included is an estimate of the error in the para-hydrogen scattering cross section calculated by Fermi's method.

## ii. TIME-DEPENDENT SCATTERING THEORY

We are concerned with the development in time of a system consisting of two interacting parts, which are such that the interaction energy approaches zero as the two parts are separated spatially. Correspondingly, the Hamiltonian is decomposed into the unperturbed Hamiltonian $\mathrm{H}_{0}$, describing the two independent parts, and $H_{1}$, the energy of interaction. Since the problem is to describe the effect of $H_{1}$, it is convenient to remove the time dependence associated with $H_{0}$ from the Schrodinger equation

$$
\begin{equation*}
i \hbar\left[\partial \Psi^{\prime}(t) / \partial t\right]=\left(H_{0}+H_{1}\right) \Psi^{\prime}(t) . \tag{1.1}
\end{equation*}
$$

This is accomplished by the witary transformation

$$
\begin{equation*}
\Psi^{\prime}(t)=\exp \left(-i H_{0} t / \hbar\right) \Psi(t) \tag{1.2}
\end{equation*}
$$

which yields

$$
\begin{align*}
i \hbar[\partial \Psi(t) / \partial t] & =H_{1}(t) \Psi(t),  \tag{1.3}\\
H_{1}(t) & =\exp \left(i H_{0} t / \hbar\right) H_{1} \exp \left(-i H_{0} t / \hbar\right)
\end{align*}
$$

The initially non-interacting parts of the system are characterized by the state vector $\Psi(-\infty)$. On following the course of the interaction and the eventual separation of the two parts, we are led to the state vector $\Psi(+\infty)$, representing the final state of the system. This description can be made independent of the particular initial state by regarding the time development as the unfolding of a unitary transformation:

$$
\begin{equation*}
\Psi(l)=U_{+}(l) \Psi(-\infty), \quad U_{+}^{+}(t) U_{+}(l)=1 . \tag{1.4}
\end{equation*}
$$

[^2]In particular,

$$
\Psi(\infty)=S \Psi(-\infty), \quad S=U_{+}(\infty)
$$

defines the collision operator, which generates the form state of the system from an arbitrary initial state. $\mathrm{T}_{4}$ operator $U_{+}(l)$ is to be obtained as the solution of $1:$ differential equation

$$
\begin{equation*}
i n\left[\partial U_{+}(l) / \partial l\right]=H_{1}(l) U_{+}(l) \tag{11}
\end{equation*}
$$

subject to the boundary condition

$$
\begin{equation*}
U_{+}(-\infty)=1 . \tag{1}
\end{equation*}
$$

It is also useful to introduce a unitary operator $\|_{.}$ which generates the state vector $\Psi(l)$ from the $f$. state $\Psi(\infty)$,

$$
\begin{equation*}
\Psi(t)=U_{-}(t) \Psi(\infty)=U_{-}(t) S \Psi(-\infty) \tag{i1}
\end{equation*}
$$

Since the two operators are related by

$$
U_{+}(t)=U_{-}(l) S
$$

the operator $U_{-}(t)$ is evidently the solution of 0 equations

$$
i \hbar\left[\partial U_{-}(l) / \partial l\right]=H_{1}(t) U_{-}(t), \quad U_{-}(\infty)=1 . \quad \text { (1.t }
$$

Furthermore,

$$
U_{-}(-\infty)=S^{-1}
$$

which is the operator generating the initial state ver: from the final state vector.

The differential equation for $U_{+}(t)$ can be replenby the integral equation

$$
\begin{aligned}
U_{+}(t) & =1-(i / h) \int_{-\infty}^{1} H_{1}\left(l^{\prime}\right) U_{+}\left(l^{\prime}\right) d t^{\prime} \\
& =1-(i / h) \int_{-\infty}^{\infty} \eta\left(t-t^{\prime}\right) H_{1}\left(t^{\prime}\right) U_{+}\left(l^{\prime}\right) d t^{\prime}
\end{aligned}
$$

which incorporates the boundary condition (1.7). He

$$
\begin{array}{rlrl}
\eta\left(t-t^{\prime}\right)=1 ; & & t>t^{\prime} . \\
=0 ; & t<t^{\prime} .
\end{array}
$$

Similarly, $U_{-}(l)$ obeys the integral equation

$$
\begin{aligned}
U_{-}(t) & =1+(i / h) \int_{-}^{\infty} H_{1}\left(l^{\prime}\right) U_{-}\left(l^{\prime}\right) d l^{\prime} \\
& =1+(i h /) \int_{-\infty}^{\infty} d t^{\prime} I_{1}\left(l^{\prime}\right) U_{-}\left(t^{\prime}\right) \eta\left(l^{\prime}-t\right) .
\end{aligned}
$$

By considering the limit as $\rightarrow \infty$ in (1.12) and $\mu-\infty$ in (1.14), we obtain

$$
S=1-(i / h) \int_{-\infty}^{\infty} H_{1}(t) U_{+}(t) d t
$$

$$
\begin{equation*}
S^{-1}=1+(i / h) \int_{-\infty}^{\infty} H_{1}(t) U_{-}(l) d l \tag{1.16}
\end{equation*}
$$

ih are, of course, connected by (1.9).
Te differential and integral equations charac--ing $U_{+}(l)$ and $U_{-}(l)$ will now be replaced by equiva-.- variational principles from which the fundamental .stions are obtained as conditions expressing the .nary property of a suitable expression. Further$r$ e the stationary value of this quantity is just $S$, the son operator. Hence the variational formulation , x p problem also yields a practical means of ap$\rightarrow$ mate calculation, since errors in the construction , will be minimized by employing a stationary ex-- von.

We first consider

$$
\begin{equation*}
S^{\prime} \neq l_{+}(\infty)-\int_{-\infty}^{\infty} U_{-}+(t)\left(\frac{\partial}{\partial t}+\frac{i}{h} H_{1}(t)\right) U_{+}(t) d t \tag{1.17}
\end{equation*}
$$

$\therefore$ is regarded as a function of the operator $\boldsymbol{U}_{+}(l)$, nt only to the restriction (1.7), and of the Hersi conjugate of the arbitrary operator $U_{-}(l)$. The .se induced in ' $S$ ' by small, independent, variations . $\ldots$ and $U_{-}$is

$$
S^{\prime}=\left(1-U_{-}(\infty)\right)+\delta U_{+}(\infty)
$$

$$
\begin{align*}
& -\int_{-\infty}^{\infty} \delta U_{-}+(t)\left(\frac{\partial}{\partial t}+\frac{i}{h} H_{2}(t)\right) U_{+}(t) d t  \tag{1.18}\\
+ & \int_{-\infty}^{\infty}\left[\left(\frac{\partial}{\partial t}+\frac{i}{h_{h}} H_{1}(t)\right) U_{-}(t)\right]^{+} \delta U_{+}(t) d t .
\end{align*}
$$

;uirement that ' $S$ ' be stationary with respect to 2? variations of $U_{+}$and $U_{-}$, apart from the tion (1.7), thus leads to the differential equations (1.10) and the boundary condition (1.10) for It is also evident from (1.17) that the stationary = of ' $S$ ' is the collision operator $S$, according to I somewhat more symmetrical version of (1.17) is $=\frac{1}{2}\left(U_{+}(\infty)+U_{-}+(-\infty)\right)$

$$
\begin{array}{r}
-\int_{-\infty}^{\infty}\left[\frac{1}{2} U_{-}+(t) \frac{\partial U_{+}(t)}{\partial t}-\frac{1}{2} \frac{\partial U_{-}+(t)}{\partial t} U_{+}(t)\right. \\
\left.+\frac{i}{h} U_{-}+(t) H_{1}(t) U_{+}(t)\right] d t \tag{1.19}
\end{array}
$$

1. 

Aed to the restrictions

$$
\begin{equation*}
U_{+}(-\infty)=U_{-}(\infty)=1 . \tag{1.20}
\end{equation*}
$$

: rasly verified that ' $S$ ' is stationary with respect to . . ens of $U_{+}$and $U_{-}$about the solutions of the - tial equations (1.6) and (1.10), subject to the +7 conditions (1.20), and that the stationary A I'S' is $S$.

A variational basis for the integral equations (1.12) and (1.14) is provided by the expression

$$
\begin{aligned}
S^{\prime}=1 & -\frac{i}{h} \int_{-\infty}^{\infty}\left[U_{-}+(t) H_{1}(\theta)+H_{1}(t) U_{+}(t)\right] d t \\
& +\frac{i}{h} \int_{-\infty}^{\infty} U_{-}+(t) H_{1}(t) U_{+}(l) d l \\
& +\left(\frac{i}{h}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U_{-}+(t) H_{1}(t) \eta\left(t-t^{\prime}\right)
\end{aligned}
$$

$X H_{1}\left(t^{\prime}\right) U_{+}\left(t^{\prime}\right) d t d t^{\prime}$.
Thus,

$$
\begin{align*}
\delta^{\prime} S^{\prime}= & \frac{i}{h} \int_{-\infty}^{\infty} \cdot d l \delta U_{-}+(t) H_{1}(t)\left[U_{+}(t)-1\right. \\
& \left.+\frac{i}{h} \int_{-\infty}^{\infty} \eta\left(t-t^{\prime}\right) H_{1}\left(l^{\prime}\right) U_{+}\left(l^{\prime}\right) d t^{\prime}\right] \\
& +\frac{i}{h} \int_{-\infty}^{\infty} d t\left[U_{-}(t)-1-\frac{i}{h} \int_{-\infty}^{\infty} d t^{\prime} H_{2}\left(t^{\prime}\right)\right. \\
& \left.\times U_{-}\left(l^{\prime}\right) \eta\left(l^{\prime}-t\right)\right]^{+} H_{1}(t) \delta U_{+}(t) \tag{1.22}
\end{align*}
$$

which is indeed zero if $U_{+}$and $U_{-}$satisfy their defining integral equations. It is also evident that the stationary value of ' $S$ ' is jutst the collision operator, in the form (1.15).

This variational principle differs from (1.17), or (1.19), in that no restrictions are imposed on $U_{+}$and $U_{\rightarrow}$, and that every integral contains the interaction operator $H_{3}$. The latter property implies that an adequate approximation to $\boldsymbol{C}_{+}^{-}$and $\boldsymbol{C}_{-}^{-}$- is required only during the actual process of interaction. Furthermore, the second type of variational principle will yield more accurate results than the first if the same approximate operators $U_{+}$and $U_{-}$are employed. This is indicated by the results of inserting the simple but crude approxi-. mation

$$
\begin{equation*}
U_{+}(l)=U_{-}(l)=1 \tag{1.23}
\end{equation*}
$$

in (1.17) and (1.21). The former yields

$$
\begin{equation*}
S \simeq 1-(i / h) \int_{-\infty}^{\infty} H_{1}(t) d t \tag{1.24}
\end{equation*}
$$

which is equivalent to the first Born approximation, while (1.21) gives

$$
\begin{array}{r}
\left.S \simeq 1-(i / h) \int_{-\infty}^{\infty} H_{1}(l) d t+(i)^{\prime} h\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H_{1}(l) \\
\times \eta\left(t-h^{\prime}\right) H_{1}\left(l^{\prime}\right) d d d t^{\prime} \tag{1.25}
\end{array}
$$

the second Born approximation.

These approximate expressions for $S$ illustrate a disadvantage of the variational principles thus far discussed; the unitary property is not guaranteed for an inexact $S$. It follows from (1.24), for example, that

$$
\begin{equation*}
S^{+} S \simeq 1+\left(1 / h^{2}\right)\left(\int_{-\infty}^{\infty} H_{1}(t) d t\right)^{2} . \tag{1.26}
\end{equation*}
$$

A version of the theory that meets this objection is oftained on replacing the unitary operators $U_{+}(f)$ and (S.(a) iny

$$
\begin{equation*}
V(l)=U_{+}(l) 2 /(1+S)=U_{-}(l) 2 /\left(1+S^{-1}\right) \tag{1.27}
\end{equation*}
$$

Note that

$$
\begin{align*}
V(-\infty) & =2 /(1+S)  \tag{1.28}\\
V(\infty) & =2 /\left(1+S^{-1}\right)=2 S /(1+S)
\end{align*}
$$

whence

$$
\begin{equation*}
\frac{1}{2}(V(\infty)+V(-\infty))=1 \tag{1.29}
\end{equation*}
$$

and

$$
\begin{equation*}
V(\infty)=V^{+}(-\infty) \tag{1.30}
\end{equation*}
$$

The property (1.29) leads us to write

$$
\begin{equation*}
V(\infty)=1-\frac{1}{2} i K ; \quad V(-\infty)=1+\frac{1}{2} i K \tag{1.31}
\end{equation*}
$$

while (1.30) supplies the information

$$
\begin{equation*}
K^{+}=K \tag{1.32}
\end{equation*}
$$

the so-called reaction operator $K$ is Hermitian. On remarking that

$$
\begin{equation*}
S=V(\infty) / V(-\infty) \tag{1.33}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S=\left(1-\frac{1}{2} i K\right) /\left(1+\frac{1}{2} i K\right) \tag{1.34}
\end{equation*}
$$

which represents the unitary $S$ in terms of the Hermitian $K$. We shall now construct a variational principle for $K$ in which the Herrmitian property is assured.

Consider thę operator ' $K$ ', defined by

$$
\begin{array}{r}
K^{\prime}=-\frac{i}{2} \int_{-\infty}^{\infty}\left(V^{+}+(t) \frac{\partial V(l)}{\partial t}-\frac{\partial V^{+}(t)}{\partial t} V(t)\right) d t \\
\quad+\frac{1}{h} \int_{-\infty}^{\infty} V^{+}(t) \Pi_{1}(t) V(l) d l \\
+i_{2}^{i}[(V(\infty)-V(-\infty)) \\ \tag{1.35}
\end{array}
$$

which is evidently Hermitian for arbitrary $V(t)$. The effect of a small variation in $V(t)$ and $V^{+}(t)$ is indicated
by

$$
\begin{aligned}
& \delta^{\prime} K^{\prime}=-\frac{1}{h} \int_{-\infty}^{\infty}\left[\delta V^{+}(t)\left(i h \frac{\partial}{\partial t}-H_{1}(t)\right) V(t)\right. \\
& \left.+\left[\left(i h \frac{\partial}{\partial t}-H_{1}(t)\right) V(t)\right]^{+} \delta V(t)\right] d t \\
& -\frac{i}{2}\left[\left(V^{+}(\infty)-V^{+}(-\infty)\right) \delta\left(\frac{V(\infty)+V(-\infty)}{2}\right)\right. \\
& +\left(\frac{V^{+}(\infty)+V^{+}(-\infty)}{2}-1\right) \delta(V(\infty)-V(-\infty)) \\
& -\delta\left(\frac{V^{+}(\infty)+V^{+}(-\infty)}{2}\right)(V(\infty)-V(-\infty)) \\
& -\delta\left(V^{+}(\infty)-V^{+}(-\infty)\right) \\
& \left.\times\left(\frac{V(\infty)+V(-\infty)}{2}-1\right)\right]
\end{aligned}
$$

If; therefore, $V(t)$ is restricted by the mixed bown. condition (1.29), ' $K$ ' is stationary with respot: variations about the solution of the differential equ

$$
\left(i \hbar \frac{\partial}{\partial t}-H_{1}(t)\right) V(t)=0
$$

and the stationary value of ' $K$ ' equals $K$, accordir, (1.31) and (1.32).

The integral equation satisfied by $V(t)$ can be structed from that obeyed by $U_{+}(b)$, or directly i following manner. On integrating the differential e tion (1.37) from $-\infty$ to $t$, and from $\infty$ to $l$, wed.

$$
\begin{aligned}
& V(t)=V(-\infty)-\frac{i}{h} \int_{-\infty}^{i} H_{1}\left(l^{\prime}\right) V\left(l^{\prime}\right) d t^{\prime}, \\
& V(t)=V(\infty)+\frac{i}{h} \int_{1}^{\infty} H_{1}\left(t^{\prime}\right) V\left(l^{\prime}\right) d t^{\prime}
\end{aligned}
$$

The addition of these equations yieids, in conserf of the boundary condition (1.29),

$$
V(t)=1-\frac{i}{2 \hbar} \int_{-\infty}^{\infty} \epsilon\left(t-t^{\prime}\right) H_{1}\left(l^{\prime}\right) V\left(l^{\prime}\right) d l^{\prime}
$$

where

$$
\begin{aligned}
e\left(t-t^{\prime}\right) & =1 ; \quad & & t>t^{\prime} \\
& =-1 ; & & t<t^{\prime} .
\end{aligned}
$$

Conversely, the differential equation and boundan? dition obeyed by $V(t)$ can be deduced from the it: equation. Note also that

$$
K=i(V(\infty)-V(-\infty))=\frac{1}{h} \int_{-\infty}^{\infty} H_{1}(t) V(t) d t
$$

I variational principal formulation of this integral Instion is provided by the expression

$$
l^{+} \cdot \frac{1}{h} \int_{-\infty}^{\infty}\left(H_{1}(t) V(t)+V^{+}(t) H_{1}(t)\right) d t
$$

$$
\begin{align*}
& -\frac{1}{h} \int_{-\infty}^{\infty} V^{+}(t) H_{1}(t) V(t) d t \\
& -\frac{i}{2 h^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V^{+}(t) H_{1}(t) e\left(t-t^{\prime}\right) H_{1}\left(l^{\prime}\right)  \tag{1.42}\\
& \times V\left(t^{\prime}\right) d t d t^{\prime}
\end{align*}
$$

ow $h$ is obviously Hermitian for arbitrary $V(l)$. Now

$$
\begin{align*}
& x^{h}=-\frac{1}{h} \int_{-\infty}^{\infty} \delta V^{+}(t) H_{1}(t)[V(t)-1 \\
& \left.+\frac{i}{2 h} \int_{-\infty}^{\infty} e\left(t-t^{\prime}\right) H_{1}\left(t^{\prime}\right) V\left(t^{\prime}\right) d t^{\prime}\right] d t \\
& -\frac{1}{h} \int_{-\infty}^{\infty}\left[V(t)-1+\frac{i}{2 h} \int_{-\infty}^{\infty} e\left(t-t^{\prime}\right) H_{1}\left(t^{\prime}\right)\right. \\
&  \tag{1.43}\\
& \left.\quad \times V\left(t^{\prime}\right) d t^{\prime}\right]+H_{1}(t) \delta V(t) d t
\end{align*}
$$

d is indeed zero if $V(l)$ satisfies the integral equation $\therefore$ Furthermore, the stationary value of ' $K^{\prime}$ ' is just $\therefore$ the correct reactor operator.
" $:$ abstract theory thus far developed can be made - $\rightarrow$ explicit by introducing eigenfunctions, $\Phi_{a}$, for the . 2:ed parts of the system, which will describe the ${ }^{2}$ and final states. Thus, since $S \Phi_{a}$ is the final state emergies from the initial state $\Phi_{\Delta}$, the probability - the system will be found eventually in the par-- state $\Phi_{b}$, is

$$
\begin{equation*}
W_{b a}=\left|\left(\Phi_{b}, S \Phi_{\mathrm{a}}\right)\right|^{2}=\left|S_{b \mathrm{a}}\right|^{2} . \tag{1.44}
\end{equation*}
$$

enightly more convenient to deal with the operator

$$
\begin{equation*}
T=S-1 \tag{1.45}
\end{equation*}
$$

: generates the change in the state vector produced ir interaction process. The unitary property of $S$ ins that

$$
\begin{equation*}
T+T=-\left(T+T^{+}\right) \tag{1.46}
\end{equation*}
$$

Sprobability that the system will be found in a i alar final state differing from the initial one is

$$
\begin{equation*}
b \neq a ; \quad W_{b \mathrm{c}}=\left|T_{b a}\right|^{2} . \tag{1.47}
\end{equation*}
$$

-. according to (1.15),

$$
\begin{align*}
& q=-(i / h) \int_{-\infty}^{\infty} d t\left(\Phi_{h_{2}} H_{1}(t) U_{+}(l) \Phi_{0}\right), \\
& =-(\mathrm{i} / h) \int_{-\infty}^{\infty} d t\left(\boldsymbol{\Phi}_{b}, \exp \left(i I I_{0} t / h\right) H_{1}\right. \\
& \left.\times \exp \left(-i H_{0} t / h\right) U_{+}(t) \Phi_{a}\right) \text {. } \tag{1.48}
\end{align*}
$$

It should be noted that $\Phi_{b}$ cannot be an exact eigenfunction of $\Pi_{0}$, since a superposition of momentum states (wave packet) is required to produce the spatial localizability involved in the definite separation of the two parts of the system. An equivalent description is obtained, however, by introducing eigenfunctions of $\Pi_{0}$,

$$
\begin{equation*}
H_{0} \Phi_{b}=E_{b} \Phi_{b} \tag{1.49}
\end{equation*}
$$

and simulating the cessation of interaction, arising from the separation of the component parts of the system, by an adiabatic decrease in the interaction strength as $\mapsto \pm \infty$. The latter can be represented by the factor $\exp (-\epsilon|t| / n)$ where $\varepsilon$ is arbitrarily small. Accordingly, (1.48) becomes

$$
\begin{equation*}
T_{b a}=-(i / h)\left(\Phi_{b}, H_{1} \Psi_{a}^{(+)}\left(E_{b}\right)\right) \tag{1.50}
\end{equation*}
$$

where

$$
\begin{align*}
\Psi_{a}^{(+)}(E)=\int_{-\infty}^{\infty} d t & \exp \left(i\left(E-H_{0}\right) t / h\right) \\
& \times \exp (-\mathrm{e}|t| / h) U_{+}(t) \Phi_{a} \tag{1.51}
\end{align*}
$$

Formula (1.16) for $S^{-1}-1=T^{+}$leads, in a similar way, to

$$
\begin{equation*}
\left(T^{+}\right)_{b a}=(i / \hbar)\left(\Phi_{b}, H_{1} \Psi_{a}^{(-)}\left(E_{b}\right)\right) \tag{1.52}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
T_{e b}=-(i / h)\left(\Psi_{e}^{(-)}\left(E_{s}\right), H_{1} \Phi_{b}\right) \tag{1.53}
\end{equation*}
$$

in which

$$
\begin{align*}
\Psi_{a}^{(-)}(E)=\int_{-\infty}^{\infty} d t & \exp \left(i\left(E-H_{0}\right) t / \hbar\right) \\
& \times \exp (-\epsilon|t| / h) U_{-}(t) \Phi_{\infty} \tag{1.54}
\end{align*}
$$

Determining equations for $\Psi_{a}^{(+)}(E)$ and $\Psi_{0}^{(1)}(E)$ can be obtained from (1.12) and (1.14), the integral equations for $U_{+}(t)$ and $U_{-}(t)$. Thus

$$
\begin{align*}
& \Psi_{0}^{(+)}(E)=\int_{-\infty}^{\infty} d t \exp \left(i\left(E-E_{0}\right) t / h\right) \exp (-\uparrow|/| / h) \Phi_{0} \\
& -(i / h) \int_{0}^{\infty} d \tau \exp \left(i\left(E-H_{0}\right) \tau / h\right) \\
& \quad \times \exp (-\epsilon \tau / h) H_{1} \Psi_{0}^{(+)}(E) \quad(1.5 \tag{1.55}
\end{align*}
$$

and

$$
\begin{align*}
& \Psi_{a}(-)(E)=\int_{-\infty}^{\infty} d t \exp \left(i\left(E-E_{a}\right) t / h\right) \exp (-\epsilon|t| / h) \Phi_{0} \\
& +(i / h) \int_{0}^{\infty} d r \exp \left(-i\left(E-H_{0}\right) \tau / h\right) \\
& \quad \times \exp (-\epsilon \tau / h) H_{1} \Psi_{a}^{(-)}(E), \quad(1.5 \tag{1.56}
\end{align*}
$$

where $r=\left\{t-t^{\prime} \mid\right.$. Now

$$
\begin{array}{r}
\mp \frac{i}{h} \int_{0}^{\infty} d \tau \exp \left( \pm i\left(E-H_{0}\right) r / h\right) \exp (-\epsilon \tau / h) \\
=\frac{1}{E \pm i \epsilon-H_{0}}=\frac{E-H_{0}}{\left(E-H_{0}\right)^{2}+\epsilon^{2}} \mp i \frac{\epsilon}{\left(E-H_{0}\right)^{2}+e^{1}} \\
=P \frac{1}{E-H I_{0}} \mp i \pi \delta\left(E-I_{0}\right) . \tag{1.57}
\end{array}
$$

The last expression is a symbolic statement of the following integral properties possessed by the real and imaginary parts of (1.57) in the limit as $\leftrightarrow \rightarrow$.

$$
\begin{align*}
& \quad \operatorname{Lim}_{\leftrightarrow \rightarrow 0} \int_{-\infty}^{\infty} \frac{x}{x^{2}+\epsilon^{2}} f(x) d x=P \int_{-\infty}^{\infty} \frac{f(x)}{x} d x \\
& \operatorname{Lim}_{\rightarrow \rightarrow 0} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\epsilon}{x^{2}+\epsilon^{2}} f(x) d x=f(0), \tag{1.58}
\end{align*}
$$

where $P$ denotes the principal part of the integral and $f(x)$ is an arbitrary function. Therefore
$\Psi_{a}{ }^{( \pm)}(E)=2 \pi h \delta\left(E-E_{a}\right) \Phi_{a}$

$$
\begin{equation*}
+\frac{1}{E \pm i \in-H_{0}} H_{1} \Psi_{4}^{( \pm)}(E) \tag{1.59}
\end{equation*}
$$

and, on writing

$$
\begin{equation*}
\Psi_{a}{ }^{( \pm)}(E)=2 \pi \hbar \delta\left(E-E_{a}\right) \Psi_{a}^{( \pm)} \tag{1.60}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\Psi_{a}^{( \pm)}=\Phi_{a}+\frac{1}{E_{a} \pm i e-H_{0}} H_{1} \Psi_{a}^{( \pm)} . \tag{1.61}
\end{equation*}
$$

These equations provide a time-independent formulations of the scattering probsem, in which the small pemitive or negative imaginary addition to the energy werves to, welect, automatically, outgoing or incoming wiat teress waves.

A matrix element of the operator $T$ can now be expressed as

$$
\begin{equation*}
T_{b a}=-2 \pi i \delta\left(E_{a}-E_{b}\right) \mathrm{T}_{b a} \tag{1.62}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{T}_{b a}=\left(\Phi_{b}, I_{t} \Psi_{a}^{(+)}\right)=\left(\Psi_{b}^{(-)}, \Pi_{1} \Phi_{a}\right) \tag{1.63}
\end{equation*}
$$

are equivalent forms for an element of the association matrix T, which is defined only for states of equal energy. The resulting formula for the transition probability,

$$
\begin{equation*}
W_{b a}=4 \pi^{2}\left[\delta\left(E_{a}-E_{b}\right)\right]^{2}\left|\mathrm{~T}_{b n}\right|^{2} \tag{1.64}
\end{equation*}
$$

is to be interpreted by replacing one factor, $\delta\left(E_{a}-E_{b}\right)$, by its defining time integral

$$
\begin{align*}
\delta\left(E_{a}-E_{0}\right)=\frac{1}{2 \pi h} \int_{-\infty}^{\infty} & \exp \left(i /\left(E_{a}-E_{b}\right) t / h\right) \\
& \times \exp (-a|h| / h) d l_{;} \rightarrow 0 \tag{1.65}
\end{align*}
$$

in which $E_{a}-E_{b}$ must be placed equal to zero, in is of the second delta-function factor. The expression 14 obtained

$$
W_{b a}=\frac{2 \pi}{h} \delta\left(E_{a}-E_{b}\right)\left|\mathrm{T}_{b a}\right|^{2} \int_{-\infty}^{\infty} d t, \quad(l,
$$

evidently describes the fact that transitions occur o between states of equal energy for the separated syst and with an intensity proportional to the total time effective interaction. In the idealized limit $\leftrightarrow 0$, latter is infinitely large. However, we infer from (is that the rate at which the transition probability : creases is

$$
w_{b \mathrm{c}}=(2 \pi / k) \delta\left(E_{\mathrm{a}}-E_{\mathrm{b}}\right)\left|\mathrm{T}_{\mathrm{bc}}\right|^{2}
$$

A somewhat more satisfactory derivation of : result follows from the evaluation of

$$
\begin{equation*}
w_{b a}=\frac{\partial}{\partial t}\left|\left(\Phi_{b}, U_{+}(t) \Phi_{a}\right)\right|^{2} \tag{1}
\end{equation*}
$$

which expresses the increase, per unit time, of probability that the system, known to be initith the state $a$, will be found at time $t$ in the state $b .1$

$$
\begin{array}{r}
w_{b \mathrm{c}}=\frac{i}{h}\left(H_{1}(t) U_{+}(h) \Phi_{a}, \Phi_{b}\right) \\
\quad \times\left(\Phi_{b}, U_{+}(t) \Phi_{a}\right)+\text { complex conjugate } \\
=\frac{1}{h^{2}} \int_{-\infty}^{1} d t^{\prime}\left(\exp \left(i /\left(E_{b}-H_{0}\right) t / h\right) U_{+}(t) \Phi_{a}, H_{i} h\right. \\
\\
\quad \times\left(\Phi_{b}, H_{1} \exp \left(i\left(E_{b}-H_{0}\right) t^{\prime} / h\right)\right. \\
\\
\left.\times U_{+}\left(t^{\prime}\right) \Phi_{a}\right)+ \text { c.c. } i:
\end{array}
$$

in which we have employed (1.12), and assumed $b \neq a$. This can be simplified by noting that (1.5! (1.60),

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d t \exp \left(i\left(E-H_{0}\right) t / h\right) \exp (-\epsilon|t| / h) U_{+}(l) \Phi_{0} \\
&=2 \pi h \delta\left(E-E_{0}\right) \Psi_{0}^{(t)}
\end{aligned}
$$

imply that

$$
\exp \left(-i H_{d} t / h\right) U_{+}(t) \Phi_{a}=\exp \left(-i E_{a} t / h\right) \Psi_{0}^{(t)}
$$

which is just the state vector, in the Schrodingre sentation, of our idcalized stationary state. Hear

$$
\begin{aligned}
w_{\mathrm{ba}} & =\frac{1}{h^{2}}\left|\mathrm{~T}_{\mathrm{ba}}\right|^{2} \int_{-\infty}^{1} \exp \left(i\left(E_{\mathrm{a}}-E_{\mathrm{b}}\right)\left(t-l^{\prime}\right) / h\right) d l^{\prime}+c c \\
& =\frac{2 \pi}{h}\left|\mathrm{~T}_{\mathrm{ba}}\right|^{2} \delta\left(E_{\mathrm{a}}-E_{\mathrm{b}}\right)
\end{aligned}
$$

A simple expression for the total rate of tr: from the initinl state follows from the general 10 :
te operator $T$ contained in (1.46). On writing a ar element of this operator relation and substituting :3, we obtain

$$
\begin{align*}
& 1 \pi^{2} \Sigma_{b} \delta\left(E_{a}-E_{b}\right) \mathrm{T}_{b a} * \delta\left(E_{b}-E_{c}\right) \mathrm{T}_{b 0} \\
&=2 \pi i \delta\left(E_{\mathrm{a}}-E_{c}\right)\left(\mathrm{T}_{\mathrm{ac}}-\mathrm{T}_{a a^{*}}\right) . \tag{1.73}
\end{align*}
$$

$\times$ factor $\delta\left(E_{a}-E_{c}\right)$ can be canceled and (1.73) then mi, for the special situation, $c=a$,

$$
\begin{gather*}
4 \pi^{2} \sum_{b} \delta\left(E_{a}-E_{b}\right)\left|\mathrm{T}_{b a}\right|^{2}=-4 \pi I m\left(\mathrm{~T}_{\mathrm{a}}\right)  \tag{1.74}\\
\sum_{b} w_{b a}=-(2 / h) \operatorname{Im}\left(\mathrm{T}_{a \mathrm{a}}\right) . \tag{1.75}
\end{gather*}
$$

. ift side of this formula is not exactly the total rate a s sition out of the state $a$, since $b=a$ is included in - smmation. However, a single state makes no conation to such a summation; a group of states is . Cd . A relation of the type (75) is characteristic . ise theory, in which the reduction in intensity of we wave passing through a scattering medium is ated for by destructiv interference between the $\sim \perp$ wave and the secondary waves scattered in the -: :xn of propagation.
: sriational formulation of Eq. (1.61) by means of $\therefore$.onary expression for $T_{\text {ba }}$ can be obtained from the $\because$ ional principle (1.21). A matrix element of this -ntor cquation reads

$$
\begin{aligned}
& \sigma_{a}^{\prime}-\frac{i}{h} \int_{-\infty}^{\infty} d l\left[\left(\exp \left(i\left(E_{a}-H_{0}\right) t / h\right) U_{-}(t) \Phi_{b}, H_{1} \Phi_{a}\right)\right. \\
& \left.+\left(\phi_{n}, I_{1} \exp \left(i\left(E_{b}-H_{0}\right) / / h\right) U_{+}(l) \Phi_{a}\right)\right] \\
& +\frac{i}{t} \int_{-\infty}^{*} d l\left(\exp \left(-i I_{0} t / h\right) U_{-}(i) \Phi_{b},\right. \\
& \left.\times H_{1} \exp \left(-i H_{0} / / h\right) U_{+}(t) \Phi_{a}\right) \\
& +\left(\frac{i}{k}\right)^{2} \int_{-\infty}^{\infty} d t \int_{-\infty}^{t} d t^{\prime}\left(\exp \left(-i H_{0} t / \hbar\right) U_{-}(t) \Phi_{\infty},\right.
\end{aligned}
$$

$\times H_{1} \exp \left(-i H_{0}\left(t-t^{\prime}\right) / h\right)$

$$
\begin{equation*}
\left.\times H_{1} \exp \left(-i I_{0} t^{\prime} / h\right) U_{+}\left(t^{\prime}\right) \Phi_{\mathrm{a}}\right) \tag{1.76}
\end{equation*}
$$

, h the adiabatic reduction of $H_{1}$ for large $|\boldsymbol{|}|$ has on indicated explicitly. We now restrict ourselves a class of stationary states, according to the -rtion
$\exp \left(-i I_{0} t / h\right) U_{ \pm}(t) \Phi_{a}=\exp \left(-i E_{a} t / h\right) \Psi_{a}( \pm)$.

- trult of performing the time integrations is ex--me by

$$
\begin{align*}
\xi_{a} \cdot\left(\Psi_{b}^{(-)},\right. & \left.H_{2} \Phi_{a}\right)+\left(\Psi_{b}, H_{1} \Psi_{a}^{(+)}\right) \\
& -\left(\Psi_{b}^{(-)}, H_{1} \Psi_{a}^{(+)}\right) \\
& +\left(\Psi_{b}^{(-)}, H_{i} \frac{1}{E+i_{e}-H_{0}} H_{1} \Psi_{a}^{(t)}\right) \tag{1.78}
\end{align*}
$$

where $E$ is the common energy of states $a$ and $k$ We shall verify directly that (1.78) has the required properties. Thus

$$
\begin{array}{r}
\delta^{\prime} \mathrm{T}_{b 0}=\left(\delta \Psi_{b}^{(-)}, H_{1}\left(\Phi_{0}+\frac{1}{E+i e-H_{0}} H_{1} \Psi_{0}^{(+)}\right.\right. \\
\left.\left.-\Psi_{a}^{(+)}\right)\right)+\left(\left(\Phi_{b}+\frac{1}{E-i \epsilon-H_{0}} H_{1} \Psi_{0}^{(-)}\right.\right. \\
\left.\left.-\Psi_{b}^{(-)}\right), H_{1} \delta \Psi_{a}^{(+)}\right) \tag{1.79}
\end{array}
$$

which is indeed zero for variations about the solutions of (1.61). Furthermore, it is a consequence of the latter equations that

$$
\begin{array}{r}
\left(\Psi_{b}^{(-)}, H_{1} \Psi_{a}^{(+)}\right)-\left(\Psi_{b}^{(-)}, H_{1} \frac{1}{E+i_{e}-H_{0}} H_{1} \Psi_{a}^{(+)}\right) \\
=\left(\Psi_{b}^{(-)}, H_{1} \Phi_{a}\right)=\left(\Phi_{b}, H_{1} \Psi_{a}^{(+)}\right) \tag{1.80}
\end{array}
$$

so that the stationary value of ' $\mathrm{T}^{\prime}$ 'a is $\mathrm{T}_{b a}$, according to (1.63).

A similar theory can be developed for the matrix elements of the operator $K$. It is easily shown that

$$
\begin{equation*}
K_{b e}=2 \pi \delta\left(E_{0}-E_{b}\right) \mathrm{K}_{b a}, \tag{1.81}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{b a}=\left(\Phi_{b}, H_{1} \Psi_{a}^{(1)}\right)=\left(\Psi_{b}^{(1)}, H_{1} \Phi_{a}\right) \tag{1.82}
\end{equation*}
$$

The time-independent state vector $\Psi_{a}{ }^{(1)}$ describes a stationary state, according to the relation

$$
\begin{equation*}
\exp \left(-i H_{0} t / \hbar\right) V(t) \Phi_{a}=\exp \left(-i E_{a} t / \hbar\right) \Psi_{a}{ }^{(1)} \tag{1.83}
\end{equation*}
$$

and obeys the equation

$$
\begin{equation*}
\Psi_{0}^{(1)}=\Phi_{0}+P\left(\frac{1}{E_{0}-H_{0}}\right) H_{1} \Psi_{0}^{(1)} \tag{1.84}
\end{equation*}
$$

A variational basis for (1.82) and (1.84) is provided by

$$
\begin{align*}
: K_{b a}^{\prime}=' K^{\prime} b^{*} & =\left(\Psi_{0}^{(1)}, H_{1} \Phi_{a}\right) \\
& +\left(\Phi_{b}, H_{1} \Psi_{a}^{(1)}\right)-\left(\Psi_{b}^{(1)}, H_{1} \Psi_{a}^{(1)}\right) \\
& +\left(\Psi_{b}^{(1)}, H_{1} P\left(\frac{1}{E-H_{0}}\right) H_{1} \Psi_{a}^{(1)}\right) . \tag{1.85}
\end{align*}
$$

The connection between the matrices $\mathbf{T}$ and K is obtained from

$$
\begin{equation*}
T=S-1=-i K /\left(1+\frac{1}{2} i K\right) \tag{1.86}
\end{equation*}
$$

on rewriting the latter as

$$
\begin{equation*}
T+\frac{1}{2} i K T=-i K \tag{1.87}
\end{equation*}
$$

Non-vanishing matrix elements of this operator relation are restricted to states of equal energy, according to
(1.62) and (1.81), whence

$$
\begin{equation*}
\mathrm{T}_{b a}+i \pi \sum_{\varepsilon} K_{b e} \delta\left(E_{\mathrm{c}}-E\right) \mathrm{T}_{\mathrm{ca}}=\mathrm{K}_{b \mathrm{a}} \tag{1.88}
\end{equation*}
$$

where $E$ is the common energy states $a$ and $b$. An effective way to solve this equation is to construct the eigenfunctions of K , which are defined by the eigenvalue equation

$$
\begin{equation*}
\sum_{a} K_{b a} \delta\left(E_{a}-E\right) f_{a A}=K_{A} f_{b A} \tag{1.89}
\end{equation*}
$$

Since $K$ is an Hermitian matrix, the eigenvalues $K_{A}$ are real, the cigenfunctions $f_{\circ A}$ are orthogonal, and may be normalized according to

$$
\begin{equation*}
\sum_{a} f_{a A}{ }^{*} \delta\left(E_{a}-E\right) f_{a B}=\delta_{A B} \tag{1.90}
\end{equation*}
$$

The matrix elements of $K$ can be exhibited in terms of the eigenfunctions and eigenvalues of $K$

$$
\begin{equation*}
K_{b a}=\sum_{A} f_{b A} K_{A} f_{a A}{ }^{*} . \tag{1.91}
\end{equation*}
$$

Equation (1.88) for $T$ will then be satisfied by

$$
\begin{equation*}
T_{b e}=\sum_{A} f_{b A} T_{A} f_{a A}{ }^{*}, \tag{1.92}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{T}_{\mathbf{A}}+i \boldsymbol{} \mathbf{K}_{\boldsymbol{A}} \mathbf{T}_{\mathbf{A}}=\mathbf{K}_{\boldsymbol{A}} \tag{1.93}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{T}_{\boldsymbol{A}}=\mathbf{K}_{A} /\left(1+i \pi \mathbf{K}_{A}\right) \tag{1.94}
\end{equation*}
$$

This is only to say that $T$ is a function of $K$ and therefore posscsses the same cigenfunctions, while its eigenvalues are determined by those of K . These eigenvalues can be conveniently expressed by introducing the real arigles $B_{A}$, accerrcling, to

$$
\begin{equation*}
K_{A}=-(1 / \pi) \tan \delta_{A} \tag{1.95}
\end{equation*}
$$

No that

$$
\begin{equation*}
T_{A}=-(1 / \pi) \sin \delta_{A} e^{\theta_{A}} . \tag{1.96}
\end{equation*}
$$

The resulting expression for the transition probability per unit time is

$$
\begin{equation*}
w_{b a}=(2 / \pi \hbar)\left|\sum_{A} \sin \delta_{A} e^{i b_{A}} f_{b \Lambda} f_{a \Lambda} A^{*}\right|^{2} \delta\left(E_{a}-E_{b}\right) \tag{1.97}
\end{equation*}
$$

and the total probability per unit time for transitions from a particular state is given by

$$
\begin{equation*}
\sum_{b} w_{b a}=(2 / \pi h) \sum_{A} \sin ^{2} \delta_{A}\left|f_{a A}\right|^{2} \tag{1.98}
\end{equation*}
$$

according to (1.97) or (1.75). Finally, the sum of the total transition probability per unit time over all mitial states of the same energy is expressed by

$$
\begin{equation*}
\sum_{a, a} w_{b a} \delta\left(E_{a}-E\right)=(2 / \pi h) \sum_{A} \sin ^{2} \delta_{A} . \tag{1.99}
\end{equation*}
$$

These results are gencralizations of familiar formulas obtained in the conventional phase shift analysis of the scattering of a particle by a central field of force. In the latter situation, the eigenfunctions of $K$ are evident from symmetry considerations, namely the invariance of $\mathbf{K}_{b a}$ under a simultanedus rotation of $\mathbf{k}_{a}$ and $\mathbf{k}_{b}$, the
propagation vectors that define the initial and ! states. It may be inferred that the foa are sphe harmonics, considered as a function of the angles: define the direction of $\mathbf{k}_{\mathbf{a}}$,

$$
f_{a \Lambda}=C Y_{l^{m}}^{m}\left(\mathrm{k}_{\mathrm{a}}\right) ; \quad A \equiv l, m,
$$

and that the eigenvalues of $K$ depend only upon: order of the spherical harmonics, i.e., $\delta_{A}=\delta_{1}$. The . stant $C$ is fixed by the normalization convention tained in (1.90), which now reads,

$$
|C|^{2} \int Y_{t} m^{*}(\mathbf{k}) Y_{t}, m^{\prime}(\mathbf{k})_{\rho} d \Omega=\delta_{1} \delta_{m m^{\prime}} \cdot
$$

Here $\rho d \Omega$ is the number of states, per unit energ; in associated with motion within the solid angle $d \Omega$ : occurs as a weight factor in a summation overs. with equal energy, replacing the summation ore states as restricted by the factor $\delta\left(E_{a}-E\right)$. Explir.

$$
\begin{equation*}
\rho=\frac{p^{2} d p}{8 \pi^{2} h^{2} d E}=\frac{1}{8 \pi^{2} h} \frac{k^{2}}{v} \tag{1:}
\end{equation*}
$$

if we consider a unit spatial volume. The second: in (1.102) expresses $\rho$ in terms of the wave num'. and $v$, the speed of the particle. With spherial monics that are normalized on a unit sphere (f requires that

$$
|C|^{2}=1 / \rho=8 x^{2} \hbar v / k^{2}
$$

We may now compute from (1.97) the proba! per unit time, that the particle is scattered fre direction of $k_{e}$ into the solid angle $d \Omega$ around the : tion of $\mathbf{k}_{6}$,


We then obtain the well-known expression of $t$. ferential cross section for scattering through an at; $d \sigma(\vartheta)=\left(1 / k^{2}\right)\left|\sum_{l}(2 l+1) \sin \delta_{l} e^{\omega_{l}} P_{l}(\cos \theta)\right|^{2} d \Omega \quad(1$ on dividing $w$ by $v$, which measures the flux of is particles, and employing the spherical harmonic. tion theorem,

$$
\sum_{m=-t}^{t} Y_{l^{m}}\left(k_{0}\right) Y_{l^{\prime}} m^{*}\left(k_{0}\right)=[(2 l+1) / 4 \pi] P_{l}(\cos \theta),
$$

where the Legendre polynomial $P_{1}(\cos \theta)$ is a tr of $\vartheta$, the angle between $\mathbf{k}_{a}$ and $\mathbf{k}_{\mathrm{b}}$. The total $\boldsymbol{s i}^{+}$ cross section is obtained from (1.98),

$$
\begin{aligned}
\sigma & =(2 / \pi h v) \sum_{l=m} \sin ^{2} \delta_{l}|C|^{2}\left|Y_{l}-\left(k_{0}\right)\right|^{2} \\
& =\left(4 \pi / k^{2}\right) \sum_{i}(2 l+1) \sin ^{2} \delta_{l}
\end{aligned}
$$

requence of

$$
\begin{equation*}
\sum=1 I^{\prime} z^{-\prime}\left(k_{4}\right) i^{2}=(2 l+1) / 4 \pi . \tag{1.108}
\end{equation*}
$$

, the total cross section is independent of the $\therefore$ direction, the same result follows immediately - 1.49).
$r_{1}$ cunsider finally, the variational formulation of $u s$ possessing the general character of the scat: $x$ a central force field; namely, those in which -nfunctions of $\mathbf{K}$ are determined by symmetry ، rations, and the basic question is to obtain the Jues $K_{A}$, or the phase angles $\delta_{A}$. For this purpose, ,ixe that the inverse of (1.91) is
$\delta_{\rho} q^{\circ} f_{a}{ }^{\circ} \delta\left(E_{b}-E\right) \mathbf{K}_{b a} f_{a A} \delta\left(E_{a}-E\right)=\mathbf{K}_{A} \delta_{A B}$.
$\because x l u c i n g$ the state vectors

$$
\begin{align*}
\sum_{a} \Phi_{a} f_{a} \delta\left(E_{a}-E\right) & =\Phi_{A},  \tag{1.110}\\
\sum . \Psi_{a}^{(1)} f_{a A} \delta\left(E_{a}-E\right) & =\Psi_{A}^{(1)}, \tag{1.111}
\end{align*}
$$

.national principle (1.85) becomes


$$
\begin{align*}
& +\left(\Phi_{B}, H_{1} \Psi_{A}^{(1)}\right)-\left(\Psi_{B}^{(1)}, H_{1} \Psi_{A}^{(1)}\right) \\
& +\left(\Psi_{B}^{(1)}, H_{1} P\left(\frac{1}{E-H_{0}}\right) H_{1} \Psi_{A}^{(1)}\right) . \tag{1.112}
\end{align*}
$$

a: : at $\Phi_{A}$, or more exactly written $\Phi_{A, E}$, has the . 7 orthogonality-normalization property:
$\left.1,,^{H_{A}, E^{*}}\right)=\sum_{a} f_{a A^{*}} \delta\left(E_{a}-E\right) f_{A B} \delta\left(E_{a}-E^{\prime}\right)$

$$
=\delta\left(E-E^{\prime}\right) \sum_{a} f_{a A} * \delta\left(E_{a}-E\right) f_{a B}
$$

$$
\begin{equation*}
=\delta_{A B} \delta\left(E-E^{\prime}\right) \tag{1.113}
\end{equation*}
$$

at the inverses of (1.110), (1.111) are

$$
\begin{equation*}
\phi_{A}=\sum_{A} f_{0 A}{ }^{*} \Phi_{A}, \quad \Psi_{0}{ }^{(1)}=\sum_{A} f_{0 A}{ }^{*} \Psi_{A}{ }^{(1)} \tag{1.114}
\end{equation*}
$$

ichare expansions of these state vectors in eigen(1) richare ex

## IVTRON SCATTERING BY A BOUND PROTON

- ay application of the variational methods disen a the first section, we consider the scattering of r.trons by a proton bound in an otherwise inert .e. If the momentum associated with the center $\therefore$.ty of the whole system is assumed to be zero, :eturbed Hamiltonian consists of two parts, one $\pm s$ the relative motion of the neutron and the isf center of gravity, the other being the Hamil$\Delta$ the internal molecular motion,

$$
\begin{align*}
& I_{0}=\left(p_{n}{ }^{2} / 2 \mu\right)+I_{m}  \tag{2.1}\\
& \mu=A M /(A+1) \tag{2.2}
\end{align*}
$$

is the reduced mass for relative motion of the neutron and molecule, while $A$ is the molecular muss in units of $M$, the mass of the neutron. The perturbation is the neutron-proton interaction energy;

$$
\begin{equation*}
H_{3}=V^{-}\left(r_{n}-r_{p}\right) \tag{2.3}
\end{equation*}
$$

which also depends upon the spin operators of neutron and proton, $\sigma_{n}$ and $\sigma_{p}$. The simplifying feature in this problem arises from the short range and large magnitude of the nuclear potential contrasted with the long range, weak molecular forces. The variational principle (1.i8) requires a knowledge of the wave function representing the state vector only within the region of nuclear interaction, where the molecular force on the proton is negligible. Thus, the basic problem is the scattering of a neutron by a free proton, with essentially zero energy of relative motion. We therefore first consider some properties of the latter system.
The unperturbed Hamiltonian for a neutron and a free proton, in the system in which the center of gravity is at rest, is

$$
\begin{equation*}
\mathfrak{X}_{0}=\mathrm{p}^{2} / M \tag{2.4}
\end{equation*}
$$

where $p$ is the relative momentum of the particles. If we temporarily omit the spin coordinates, the wave function $\varphi$, representing the unperturbed state vector $\Phi_{a}$, is simply a constant in the limit of zero energy. This constant can be chosen as unity, corresponding to a unit spatial volume. The wave function representing the state vectors $\Psi_{a}{ }^{(+)}$and $\Psi_{a}{ }^{(-)}$will be denoted by $\psi(r)$. There is no distinction between outgoing and incoming waves in the limit of zero energy. Since the scattering is necessarily isotropic, $\mathrm{T}_{\mathrm{b}}$ is simply a constant, denoted by $t$. According to (1.63), $t$ is given by

$$
\begin{equation*}
\mathbf{t}=(\varphi, V \psi)=\int V(\mathbf{r}) \psi(\mathbf{r}) d \mathbf{r}, \tag{2.5}
\end{equation*}
$$

where $\psi$ obeys the integral equation (1.61).

$$
\begin{equation*}
\psi+\left(1 / J C_{0}\right) V \psi=\varphi . \tag{2.6}
\end{equation*}
$$

The connection between $t$ and the $S$ phase shift is obtained from (1.92) and (1.96),

$$
\begin{equation*}
t=-|f|^{2} k a / \pi \tag{2.7}
\end{equation*}
$$

in which we have employed the zero energy limiting form,

$$
\begin{equation*}
\sin \delta \rightarrow k a ; k \rightarrow 0 \tag{2.8}
\end{equation*}
$$

thereby introducing the scattering amplitude $a$. The constant $f$ is fixed by the normalization condition (1.90),

$$
\begin{equation*}
|f|^{2} 4 \pi \rho=1 \tag{2.9}
\end{equation*}
$$

where, (1.102),

$$
\begin{equation*}
4 \pi \rho=k^{2} / 2 \pi^{2} h r=k M / 4 \pi^{2} n^{2} . \tag{2.10}
\end{equation*}
$$

The second form of (2.10) follows from $h k=\frac{1}{2} M \mathrm{rr}$, the relation between the relative momentum and the relative velocity. Finally,

$$
\begin{equation*}
t=-4 \pi h^{2} a / A C . \tag{2.11}
\end{equation*}
$$

If the neutron-proton interaction operator is spindependent, $t$ must be replaced by a matrix in the spin quantum numbers. The eigenfunctions of this spin matrix are those of the triplet and singlet states of resultant spin angular momentum. The associated cigenvalues of $t$ are related to the triplet and singlet scattering amplitudes,

$$
\begin{equation*}
\mathbf{t}_{1,0}=-4 \pi h^{2} a_{1,0} / M . \tag{2.12}
\end{equation*}
$$

As in (1.92), the matrix $t$ can be constructed as a linear umbination of its cigenvalues, multiplied by coefficients which are the matrix elements of projection operators for the corresponding eigenvalues. The projection operators for the triplet and singlet states are well known to be

$$
\begin{equation*}
P_{1}=\frac{1}{4}\left(3+\sigma_{n} \cdot \sigma_{p}\right) ; \quad P_{0}=\frac{1}{2}\left(1-\sigma_{n} \cdot \sigma_{p}\right) . \tag{2.13}
\end{equation*}
$$

Hence, to include spin dependent interactions it is sufficient to regard $t$ in (2.11) as a spin operator, with

$$
\begin{equation*}
a=a_{1} P_{1}+a_{0} P_{0}=\frac{1}{2}\left(3 a_{1}+a_{0}\right)+\frac{1}{2}\left(a_{1}-a_{0}\right) \sigma_{n} \cdot \sigma_{p} . \tag{2.14}
\end{equation*}
$$

We shall now perform an approximate but highly accurate evaluation of $T_{\text {ba }}$ which describes the scattering of a neutron by a bound proton. For this purpose, (1.78) is written

$$
\begin{align*}
\mathrm{T}^{\prime}{ }_{b a} & =\left(\Psi_{b}^{(-)}, V \Phi_{a}\right)+\left(\Phi_{b}, V \Psi_{a}^{(+)}\right) \\
& -\left(\Psi_{b}^{(-)}, V \Psi_{a}^{(+)}\right)-\left(\Psi_{b}^{(-)}, V \frac{1}{\mathcal{C}_{0}} V \Psi_{a}^{(+)}\right) \\
& +\left(\Psi_{b}^{(-)}, V\left(\frac{1}{E+i \in-H_{0}}+\frac{1}{\mathcal{C}_{0}}\right) V \Psi_{a}^{(+)}\right) \tag{2.15}
\end{align*}
$$

In treating the spin dependent interactions, it is convenient to suppress spin functions and thus regard $\mathrm{T}_{\mathrm{b}}$ as a spin operator. The first approximation to be introduced concerns the wave function representing the state vector $\Phi_{a}$, say $\Phi_{a}\left(\boldsymbol{r}_{n},{ }^{-1}\right.$. Here $\boldsymbol{r}_{n}$ is the neutron coordinate relative to the molecular center of gravity, while $r$ symbolizes the set of internal molecular coordinates, including $r_{p}$, the proton position vector relative to the molecular center of gravity. This wave function, describing the independent motion of the neutron and molecule, will have the form

$$
\begin{equation*}
\Phi_{a}\left(r_{n}, r\right)=\exp \left(i k_{a} \cdot r_{n}\right) \cdot X_{a}(r) \tag{2.16}
\end{equation*}
$$

in which $\chi_{a}(r)$ is an internal molecular wave function. Now $\Phi_{a}\left(r_{n}, r\right)$ in (2.15), only occurs multiplied by the short range nuclear potential $V\left(r_{n}-r_{p}\right)$. We shall therefore replace $\Phi_{a}\left(r_{n}, r\right)$ by

$$
\begin{equation*}
\Phi_{a}\left(\mathbf{r}_{p}, \mathbf{r}\right)=F_{\mathrm{a}}(\mathbf{r}) \tag{2.17}
\end{equation*}
$$

The error thereby incurred is of the order $\left(k r_{0}\right)^{2}$, where $r_{0}$ is a measure of the nuclear force range. Since the influence of molecular binding is only of interest for slow neutrons, $\cdot\left(k r_{0}\right) \approx 10^{-4}$, and we need not introduce a correction to compensate for this replacement.

A second approximation involves the last in (2.15), which is small in comparison with the , terms, since molecular energies are negligible in parison with the practically equal kinetic enerf, neutron and proton during the nuclear inten process. If we initially ignore the last term of (2.15 latter reads

$$
\begin{aligned}
\mathrm{T}_{b}^{\prime} & =\left(\Psi_{b}^{(-)}, V F_{a}\right)+\left(F_{b}, V \Psi_{a}^{(+)}\right) \\
& -\left(\Psi_{b}^{(-)}, V \Psi_{a}^{(t)}\right)-\left(\Psi_{b}^{(-)}, V \frac{1}{J C_{0}} V \Psi_{a}^{(t)}\right) .
\end{aligned}
$$

The condition that ' T ' be be stationary is that I satisfy the relation

$$
\Psi_{a}^{( \pm)}+\left(1 / \oiint \mathcal{C}_{6}\right) V \Psi_{a}^{( \pm)}=F_{a}(\mathrm{r}) .
$$

On comparison with (2.6), it is evident that

$$
\Psi_{0}^{(t)}=\psi\left(r_{m}-r_{p}\right) F_{0}(r)
$$

and the stationary value of ' T ' ${ }_{\text {be, }}$, an approxima: the correct $T_{b a}$, is given by
$\mathrm{T}_{\mathrm{b}} \simeq\left(F_{b}, V \Psi_{a}{ }^{(+)}\right)=\left(F_{b}, V \psi F_{a}\right)$

$$
=t \int F_{b}^{*}(\mathrm{r}) F_{0}(\mathrm{r}) \mathrm{dr}
$$

according to (2.5). This result,

$$
\mathrm{T}_{\mathrm{ba}} \simeq-\frac{4 \pi h^{2}}{M} a \int \exp \left[i\left(\mathrm{k}_{\mathrm{a}}-\mathrm{k}_{\mathrm{b}}\right) \cdot \mathrm{r}_{\mathrm{p}}\right] .
$$

is the Fermi approximation.
To include the last term in (2.15), we obsenv: may be written, in terms of wave functions, as

$$
\begin{aligned}
& \int \Psi_{b}(-)^{*}\left(\mathbf{r}_{n}, \mathbf{r}\right) V\left(\mathbf{r}_{n}-\mathbf{r}_{p}\right) \\
& \times\left(\mathbf{r}_{n}, \mathbf{r}\left|\frac{1}{E+i \epsilon-H_{0}}+\frac{1}{3 K_{0}}\right| \mathbf{r}_{n^{\prime}}, \mathbf{r}^{\prime}\right) V\left(\mathbf{r}_{n^{\prime}}-\mathbf{r}_{n}^{\prime}\right) \\
& \times \Psi_{0}^{(+)}\left(\mathbf{r}_{n^{\prime}}, \mathbf{r}^{\prime}\right) d \mathbf{r}_{n} d \mathbf{r d} \mathbf{r}_{n^{\prime}} d \mathbf{r}^{\prime} .
\end{aligned}
$$

We shall again introduce an approximation exploits the short range of $V$ in comparison molecular dimensions, namely, the replacementd by

$$
\begin{array}{r}
\int \Psi_{b}^{(-) *}\left(r_{n}, r\right) V\left(r_{n}-r_{p}\right) K^{(+)}\left(r_{1}, r^{\prime}\right) V\left(r_{n^{\prime}}^{\prime}-r_{p}^{\prime}\right) \\
\times \Psi_{a^{(t)}}\left(r_{n^{\prime}}, r^{\prime}\right) d r_{n} d r d r_{n}^{\prime} d r^{\prime},
\end{array}
$$

where

$$
K^{( \pm)}\left(r, r^{\prime}\right)=\left(r_{p}, r\left|\frac{1}{E \pm i e-H_{0}}+\frac{1}{x_{0}}\right| r_{p}^{\prime}, r^{\prime}\right) .
$$

${ }^{\prime} t$ conditions that ' $T$ 'bo be stationary are then exussed by
$\Psi_{a}^{(z)}+\frac{1}{\mathcal{C}_{a}} V \Psi_{a}^{( \pm)}=F_{a}(r)+\int K^{( \pm)}\left(r, r^{\prime}\right)$

$$
\begin{equation*}
\times V\left(\mathbf{r}_{n}^{\prime}-r_{p}^{\prime}\right) \Psi_{a}^{( \pm)}\left(\mathbf{r}_{n}^{\prime}, \mathbf{r}^{\prime}\right) d \mathbf{r}_{n}^{\prime} d \mathbf{r}^{\prime} \tag{2.26}
\end{equation*}
$$

ath, in virtue of (2.5) and (2.6), imply that

$$
\begin{equation*}
\Psi_{a}^{( \pm)}=\psi\left(r_{n}-r_{p}\right) G_{a}^{( \pm)}(r) \tag{2.27}
\end{equation*}
$$

stef $G_{0}^{( \pm)}(r)$ obeys the integral equation

$$
\begin{equation*}
G_{a^{( \pm)}}(\mathrm{r})-\mathrm{t} \int K^{( \pm)}\left(\mathrm{r}, \mathrm{r}^{\prime}\right) G_{a}^{( \pm)}\left(\mathrm{r}^{\prime}\right) d \mathrm{r}^{\prime}=F_{a}(\mathrm{r}) \tag{2.28}
\end{equation*}
$$

is a generalization of the integral equation obtained - Brect.
:he stationary value of ' $\mathrm{T}^{\prime}{ }_{b a}$ is given by

$$
\begin{equation*}
\mathrm{T}_{\mathrm{b}} \simeq\left(F_{b}, V \Psi_{a}^{(+)}\right)=\mathrm{t} \int F_{b}^{*}(\mathbf{r}) G_{a}^{(t)}(\mathbf{r}) d \mathbf{r} . \tag{2.29}
\end{equation*}
$$

- integral equation for $G_{a}{ }^{(+)}(r)$ can be solved by sucwre substitutions,
$r_{a}^{(+)}\left(r^{\prime}\right)=F_{\mathrm{e}}(\mathrm{r})+\boldsymbol{t} \int K^{(+)}\left(\mathrm{r}, \mathrm{r}^{\prime}\right) F_{\mathrm{a}}\left(\mathrm{r}^{\prime}\right) d \mathrm{r}^{\prime}$

$$
\begin{align*}
&+\mathbf{t}^{2} \int K^{(+)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) K^{(+)}\left(\mathbf{r}^{\prime}, \mathbf{r}^{\prime \prime}\right) \\
& \times F_{\mathrm{a}}\left(\mathbf{r}^{\prime \prime}\right) d \mathbf{r}^{\prime} d \mathbf{r}^{\prime \prime}+\cdots \tag{2.30}
\end{align*}
$$

, hb is evidently a power series expansion in $a / l$, - $\rightarrow l$ is a characteristic molecular dimension. Since .$\sim 10^{-2}$, the series converges rapidly and it is quite $\therefore$ sient to cetain only the first term beyond $F_{0}(r)$ to in an accurate estimate of the correction to Fermi's covimation. Therefore,

$$
\begin{equation*}
F_{b}-1 \int F_{b}^{*}(\mathbf{r}) F_{a}(\mathbf{r}) d \mathbf{r}+\mathbf{t}^{2} \int F_{b}^{*}(\mathrm{r}) K^{(+)}\left(\mathrm{r}, \mathrm{r}^{\prime}\right) F_{a}\left(\mathbf{r}^{\prime}\right) \tag{2.31}
\end{equation*}
$$

$\times d r d r^{\prime}$.
p construct $K^{(+)}\left(r, r^{\prime}\right)$, we observe that
$\left(z_{n}, r_{\mid}\left|\frac{1}{E+i \in-H_{0}}\right| r_{n^{\prime}}, r^{\prime}\right)$
$=\sum_{0} \Phi_{c}\left(r_{n}, r\right) \frac{1}{E+i \in-E_{0}} \Phi_{0}^{*}\left(r_{n}{ }^{\prime}, r^{\prime}\right)$
$=\sum_{i} \int \frac{d \mathbf{k}}{(2 \pi)^{3}} \exp \left(i \mathbf{k} \cdot r_{n}\right) \cdot x_{r}(r)$

$$
\begin{align*}
& \times \frac{1}{E+i e-\left(h^{2} k^{2} / 2 \mu\right)-W_{\gamma}} \\
& \quad \times \exp \left(-i \mathbf{k} \cdot r_{n}{ }^{\prime}\right) x_{\gamma}^{*}\left(r^{\prime}\right) \tag{2.32}
\end{align*}
$$

In the second version, the summation over the states of the system molecule plus free neutron is explicitly performed over the independent states of the molecule and of the neutron. For the evaluation of the corresponding matrix element of $1 / 5 \mathcal{C}_{0}$, it must be realized that the latter operator refers to the relative motion of neutron and proton only. Thus

$$
\begin{align*}
\left(r_{n}, r\left|\frac{1}{J C_{0}}\right| r_{n}{ }^{\prime}, r^{\prime}\right) & =\int \frac{d \mathbf{k}}{(2 \pi)^{2}} \exp \left(i k \cdot\left(r_{n}-r_{p}\right)\left(\frac{M}{h^{2} k^{2}}\right)\right. \\
& \times \exp \left(i \mathbf{k} \cdot\left(r_{n}{ }^{\prime}-r_{p}{ }^{\prime}\right)\right) \\
& \times \delta\left(\frac{r_{n}+r_{p}}{2}-\frac{r_{n}{ }^{\prime}+r_{p}{ }^{\prime}}{2}\right) \delta\left(g-s^{\prime}\right), \tag{2.33}
\end{align*}
$$

where s symbolizes the set of internal molecular coordinates, omitting $\mathbf{r}_{p}$. We are actually interested in (2.33) as $r_{n} \rightarrow r_{p}$ and $r_{n}{ }^{\prime} \rightarrow r_{p}{ }^{\prime}$. In this timit, $\delta\left(r_{n}+r_{p} / 2\right.$ $\left.-r_{n}{ }^{\prime}+r_{p}{ }^{\prime} / 2\right)$ becomes $\delta\left(r_{p}-r_{p}{ }^{\prime}\right)$ and we may employ the completeness relation for the molecular eigenfunctions,

$$
\begin{equation*}
\delta\left(r_{p}-r_{p}^{\prime}\right) \delta\left(s-s^{\prime}\right)=\delta\left(r-r^{\prime}\right)=\sum_{r} X_{r}(r) x_{r}^{*}\left(r^{\prime}\right) \tag{2.34}
\end{equation*}
$$

One can now combine (2.32) and (2.33) to form
$K^{(+)}\left(r, r^{\prime}\right)=\sum_{\gamma} \int \frac{d k}{(2 \pi)^{z}} \exp \left(i k \cdot r_{\boldsymbol{\gamma}}\right) x_{r}(r)$

$$
\begin{align*}
& \times\left[\frac{1}{E+i e-\left(h^{2} k^{2} / 2 \mu\right)-W_{\gamma}}+\frac{1}{\left(h^{2} k^{2} / M\right)}\right] \\
& \times \exp \left(-i \mathbf{k} \cdot \mathrm{r}_{p}{ }^{\prime}\right) x_{\gamma}{ }^{*}\left(r^{\prime}\right) \\
= & \frac{M}{h^{2}} \sum_{\gamma} \int \frac{d \mathrm{k}}{(2 \pi)^{3}} \exp \left(i \mathbf{k} \cdot\left(\mathrm{r}_{p}-\mathrm{r}_{p}^{\prime}\right)\right. \\
& \times\left[\frac{2 \mu / M}{k_{\gamma}^{2}+i \eta-k^{2}}+\frac{1}{h^{2}}\right] \mathrm{X}_{\gamma}(\mathrm{r}) \mathrm{X}_{\gamma}^{*}\left(\mathrm{r}^{\prime}\right), \quad(2.35) \tag{2.35}
\end{align*}
$$

Here

$$
\begin{equation*}
k_{\gamma}^{2}=\left(2 \mu / h^{2}\right)\left(E-W_{\gamma}\right) \tag{2.36}
\end{equation*}
$$

and $\eta=\left(2 \mu / \hbar^{2}\right) \epsilon$. The $\mathbf{k}$ integration in (2.35) involves the well-known integrals

$$
\begin{equation*}
\int \frac{d k}{(2 \pi)^{2}} \frac{\exp \left(i k \cdot\left(r_{p}-r_{p}^{\prime}\right)\right)}{k^{2}-k_{\gamma}^{2}-i \eta}=\frac{\exp \left(i k_{y}\left|r_{p}-r_{p}^{\prime}\right|\right)}{4 \pi\left|r_{p}-r_{p}^{\prime}\right|} \tag{2.3i}
\end{equation*}
$$

and

$$
\begin{equation*}
\int \frac{d k}{(2 \pi)^{3}} \frac{\exp \left(i \mathbf{k} \cdot\left(r_{p}-r_{p}{ }^{\prime}\right)\right)}{k^{3}}=\frac{1}{4 \pi\left|r_{p}-r_{p}^{\prime}\right|} \tag{2.38}
\end{equation*}
$$

where

$$
\begin{align*}
k_{\gamma} m & +\left(\frac{2 \mu}{h^{2}}\left(E-W_{\gamma}\right)\right)^{\prime} ; \quad W_{\gamma}<E \\
& =+i\left(\frac{2 \mu}{h^{2}}\left(W_{\gamma}-E\right)\right)^{\prime} ; \quad W_{\gamma}>E \tag{2.39}
\end{align*}
$$

the propagating or attenuating nature of the spherical wave corresponding to whether or not the excitation of the molecular state $\gamma$ is energetically possible. Finally, then

$$
\begin{align*}
& \kappa^{(+)}\left(r, r^{\prime}\right)=-\frac{M I}{4 \pi h^{2}} \sum_{\gamma} \chi_{\gamma}(r) x_{\gamma}^{*}\left(r^{\prime}\right) \\
& \text { and }  \tag{2.40}\\
& \qquad \times \frac{2 \mu}{M} \frac{\exp \left(i k_{\gamma}\left|r_{p}-r_{p}^{\prime}\right|\right)-1}{\left|r_{p}-r_{p}^{\prime}\right|}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{T}_{b \mathrm{a}} \simeq-\frac{4 \pi h^{2}}{M} a\left[\int F_{0}{ }^{*}(\mathbf{r}) F_{a}(\mathbf{r}) d \mathbf{r}\right. \\
& \quad+a \sum_{\gamma} \int F_{0}{ }^{*}(\mathbf{r}) x_{\gamma}(\mathbf{r}) x_{\gamma}{ }^{*}\left(\mathbf{r}^{\prime}\right) \\
& \left.\times \frac{(2 \mu / M) \exp \left(i k_{\gamma}\left|\mathbf{r}_{p}-r_{p}{ }^{\prime}\right|\right)-1}{\left|\mathbf{r}_{p}-\mathbf{r}_{p}{ }^{\prime}\right|} F_{a}\left(\mathbf{r}^{\prime}\right) d \mathbf{r} d \mathbf{r}^{\prime}\right] . \tag{2.41}
\end{align*}
$$

The ratio $2 \mu / M$ ranges from unity, referring to a free proton, to 2 , which applies to a proton bound in an
infinitely heavy molecule. Our results for these i tions are in agreement with those of Breit. In paric for a free proton $k_{\gamma}=k$, since there is no inte molecular motion, and (2.41) reduces to

$$
\mathrm{T}_{b a}=\mathrm{t}^{\prime}=-\frac{4 \pi h^{2}}{M} a(1+i k a) .
$$

This is simply the exact version of (2.7)

$$
t^{\prime}=-\frac{1}{\pi}|f|^{2} \sin \delta e^{i j}=-\frac{4 \pi h^{2}}{M} \frac{1}{k} \frac{\tan \delta}{1-i \tan \delta}
$$

with tand replaced by ka, the low energy limitinglbut retaining the complex factor $1 /(1-i \tan \delta) \simeq 1+$ The latter has a negligible effect on transition $p_{1}$ bilities in the energy range of interest, but is nece. to preserve the general conservation theorem ( 1 . We shall, indeed, verify (1.74) for the more gener pression (2.41). It is most evident from (2.31) (2.32) that

$$
\begin{align*}
-\frac{1}{\pi} I m \mathrm{~T}_{a \alpha} & =\mathrm{t}^{2} \sum_{\bullet} \int F_{a}^{*}(\mathrm{r}) F_{c}(\mathrm{r}) \delta\left(E-E_{a}\right) \\
& \times F_{c^{*}}\left(\mathrm{r}^{\prime}\right) F_{a}\left(\mathrm{r}^{\prime}\right) d \mathrm{rdr}^{\prime} \\
& =\sum_{c}\left|\mathrm{~T}_{c a}\right|^{2} \delta\left(E-E_{c}\right)
\end{align*}
$$

in which $\mathrm{T}_{00}$ on the right side is computed from Fermi approximation. This is in accordance with approximate nature of (2.41).


[^0]:    ${ }^{1}$ H. Maier-Liebnitz, Zeits. f. Naturforsch. 1, 243 (1946).

    - Ingham, Hayden, and Hess, Phys. Rev. 72, 967 (1947).

[^1]:    ${ }^{2}$ J. Schwinger, unpublished; R. E. Marshak, Phys. Rev. 71, 688 (19.7).
    ${ }^{3}$ H. Levine and J. Schwinger, Phys. Rev. 74, 958 (1948); 75, 1423 (19+9).

    4J. Schwinger, "Lectures on Nuciear Physics" Harvard University, 1947; J. Schwinger, Phys. Rev. 72, 742 (1947); J. M. Rlatt, Phys, Kev, 74, 92 (1948); W. Kohn, Phys. Kev. 74, 1763 (1948) ; J. M. Blatt and J. D. Jackison, Phys. Rev. 76, 18 (1949). Variational principles for scattering problems have aleo been independently developed by L. Hulthen, see Mott and Massey, The Theory of Atomic Collisions (Oxford University Press, London, 1949), 2nd ed., p. 128, and I. Tamm, J. Exp. Theor. Phys. USSR 18, 337 (1948); 19, 74 (1949).

[^2]:    - E. Fermi, Ricerca Scient. VII-II, 13 (1936).
    - G. Breil, Phys. Rev. 71, 215 (1947).
    ${ }^{\circ}$ G. Breit and P. R. Zilsel, Phys. Rev. 71, 232 (1947); Breit, Zilsel, and Darling, Phys. Rev. 72, 576 (1947).

