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Abstract.  A hierarchical approach to scale formation in human perception is applied to musical scales.  
The model provides an adequate mathematical description of the already known scales and reveals some 
other new possibilities, in particular, a universal 19-tone musical system. 

A formula for the information difference between two probability distributions is employed to 
construct a numerical estimate of a contradiction between two compound tones.  The discordance function 
obtained in this way possesses a number of minima which correspond to the degrees of a musical scale.  A 
dissonance function is introduced, which reveals the scale as a set of zones.  Stationarity under nonlinear 
transformations and maximum regularity provide the numerical criteria for selecting the preferable scales.  
The historical development from simple to ever more complex scales is thus traced.  The formant 
structure of the internal timbre pattern characterizes the stability of local hierarchical structures.  
Harmonic, modal, and chromatic types of scale lability are described.  Musical scale as a movable 
hierarchy of zone structures unfolds itself in various ways, forming the musical context.  The analysis of 
the discordance functions indicates the ways of releasing the tensions and shows the musical consequences 
of any melodic move. 

1.  Introduction and general outline 

A hierarchical model of scale formation in the European musical tradition  developed hereafter is 
based on the following facts. 

1.  There is no direct correlation between physical properties of sound and the perceived 
intonation [1, 2].  Man rather constructs an internal model of external sound and then tries to fit all 
what he hears into the present pattern.  That is why we speak about sound perception, which 
assumes sound sensation as well as its internal representation. 

2.  Man can never exactly define the pitch of a sound, and real toning bears zone character 
[3, 4].  Accordingly, tone perception should reflect this diffusiveness of perceived sounds. 

3.  Historically, simple distinguishing of differing sounds precedes, and only after a time the 
notion of interval is established [5].  The fifth and the octave take their place in music rather late, so 
one hardly can seriously speak about combinatorial origin of musical modes. 

4.  Globally, musical hearing evolves in the direction of distinguishing higher and higher 
overtones, and always more detailed perception of timbre [6]. 

5.  Any human activity is hierarchically organized [7–9], including the perceptual activity. 
6.  Such musical phenomena as consonance and dissonance, tension, instability and steadiness 

arise only in a specific context [6].  This is why it is important for a theory to have some formalized 
concept of musical context. 
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We follow here D. Marr’s approach [10], assuming that a detailed investigation of the 
mechanisms of perception gives little for the comprehension of perception itself.  Rather, 
construction of higher-level models permits one to bind physiological data together. One can notice 
the ever growing penetration of information theory into psychophysics of perception [7, 8, 11].  To 
be sure, we have always been taking into account the available physiological and psychological data 
on hearing. Rather comprehensive overviews can be found in [1, 2]. 

In general features, a model incorporating all these considerations is developed like this. 
The lowest level of scale perception comprises musical tones (abstracted from noises, phase 

effects, etc, which are unessential for the theory of scaling).  Any tone is represented by its harmonic 
series, that is, the set of partials, any one of which is supplied with an amplitude )1( Nntn = .  The 

set of amplitudes will be called the internal  timbre.  A partial is described by a density distribution 
with the dispersion σ .   Since N, tn, and σ give the internal representation of tone, they can be 
assumed the same for all tones and considered as the parameters of the current perceptional tuning. 

In the process of hearing, man establishes relations between tones.  As our model deals with 
probability distributions, we derive in section 2 the formula for the quantity of information in one 
probability distribution relative to another.  This rule is applied in section 3 to a pair of isolated 
partials of musical tones, to obtain a ‘discordance value’, characterizing the contradiction of the two 
sounds, the difficulty of binding them in a common system of tones.  Assuming that compound 
tones ‘interact’ through the pair relations between their partials and proportionally to the amplitudes 
of the partials, we define the discordance for two complex tones dependent on the difference of the 
pitches of their ground harmonics (section 4).  When a reference tone is fixed, one obtains a  
discordance function, the discordance distribution related to the reference tone. 

On the next level, various tone structures formed of the minimally discordant tones are 
perceived.  Since not all timbres are of equal worth for the distinct structure perception, we seek the 
parameters indicating the best scales.  The demand of the minimal timbre distortion (stationarity) 
under nonlinear transformations accompanying any image processing in human brain leads to the τ 
criterion (section 5).  The tuning of perception to a leading ‘rhythm’ in the discordance function, 
arising from regularity requirements, forms internal timbre patterns which we call optimal timbres 
(section 6).  Most suitable for scale formation are both optimal and stationary timbres. 

Section 7 shows how the relation of a discordance function to some locally defined average 
level generates a set of zones, which we associate with the scale.  The zone character of musical 
scaling is thus accounted for. 

Computer-aided calculations permit us to find a series of optimal stationary timbres.  The 
properties of some corresponding scales (for example, with 2, 3, 5, 7, and 12 tones to the octave) are 
well known in musicology.  We can therefore understand how a timbre pattern correlates with the 
scale properties, and with a good certainty describe some new scales, hardly yet established in 
musical practice.  In particular, the concept of scale stability is introduced, and the modal, harmonic, 
and chromatic types of lability are described (section 8).  Stable stationary regular scales are most fit 
for universal application.  The well-known example is the 12-tone scale.  Another universal scale, 
the 19-tone one, often appears in theoretical considerations [12–16], though only our model 
suggests adequate notions for studying basic features of 19-tone music. 
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Even in the environment of a fixed optimal scale, one can perceive its various  substructures, 
tuning perception to other ‘rhythms’ (quasiperiodic components) present in the discordance function 
by correspondingly modifying the dispersion σ .  The hierarchical system of scale imbeddings thus 
arising (usually including the local mode, and the local harmony) represents the scale context and 
permits one to naturally pass from the scale level to higher levels of musical perception, such as 
melodics, tonality, harmony (section 9). 

Thus, our model opens a new view upon all the variety of musical phenomena related to 
musical scales, clarifies some musical regularities, and reveals new prospects of evolving the sound 
base of music. 

2.  The informational measure of a change in the distribution 

Suppose we have a random variable x taking on values in an interval a ≤  x < b with a smooth 
distribution f0(x).  We are interested in the quantity of information which is obtained if, as a result of 
measurements, the distribution is found to become another function f1(x).  According to the classical 
definition, information I communicated by an event is expressed through the a priory probability p 
of the event: 

10log ≤<−= ppI  (2.1) 
To know a distribution, we should perform a large number n of independent measurements of 

our random quantity.  We divide the interval [a, b) into m small subintervals 
)1(2/2/ mjdxxdx jjjj =+<≤−  (2.2) 

2/2/11 mm dxbdxa +=−=  . 

Let the number of the x values that occurred in the jth subinterval (2.2) after n tests be nj . This 
situation corresponds to observing the a posteriori distribution f1 to be 

nndxf jjj /)(1 =  (2.3) 

up to O(dj
2) corrections, with the natural normalization condition 
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We now compute the probability of such a set of elementary events {nj}m, using the a priory 
distribution f0(x) .  It is 
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Substituting equation (2.5) into equation (2.1) permits us to compute the information 

[ ]{ } )!log()(log)!log(
1
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=
 . (2.6) 

We are going to take a continuum limit m→∞, dj→0 . However, to get a sensible result for the 
distribution, we should tend n to infinity much faster so as to ensure that each nj→∞ .  Therefore, 
we set 

.
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Now we can apply Stirling’s formula for the factorials 

[ ])/1(1)exp(2! nOnnnn n +−π=  . (2.8) 
Using equations (2.8), (2.3), and (2.4), we rewrite equation (2.6) with the O(1) accuracy as 

[ ]∑ ∑
= =

π+π−=
m

j

m

j
jjj nnxfxfdxfnI

1 1
011 )2log(

2
1)2log(

2
1)()(log)(  . (2.9) 

In the limit (2.7) the last sum in equation (2.9) behaves at most as O n n( log ) , hence, the last 
two terms become negligible as compared to the first sum.  Now, replacing the sum with the integral 
it approaches the limit of, we arrive at the final formula 

[ ])()(log)()(/ 01101 xfxfxfdxffnI
b

a
∫=∆→ . (2.10) 

In a somewhat less rigorous way, expression (2.10) has earlier been obtained independently in [17]. 
It is not unexpected that the total information is infinite; however, the specific information per 

measurement has a finite limit (2.10).  We see that 0)( 00 =∆ ff : if the distribution remains 

unchanged, then, to the leading order, I=0, that is, the probability to obtain f1=f0 is relatively not 
very far from 1.  In any other case, as it follows from equation (2.1), I > 0, hence, 0)( 01 ≥∆ ff .  It 

can also be directly checked that the specific-information functional (2.10) has a local minimum at 
f1=f0 under the restrictions 

∫ =
b

a
j jxfxfdx )1,0=(0>)(1)( . (2.11) 

If we deal with the particular case of the Gaussian distributions 
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then the specific information is given by 
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which corrects Golitsyn’s formula [11] where the last term was absent.  Our result (2.13) is always 
positive as it should be unless h1 = h0 and σ1 = σ0 . 

Formulas (2.10) and (2.13) may be taken as a rigorous basis for wide general speculations 
concerning the philosophy of esthetic perception [7, 11, 18].  We, however, leave the subject, to 
proceed further with our model of musical scales. 

3.  The discordance value for a pair of partials 

In this section we consider an interaction between two elementary stimuli, which results in an 
informational measure of their mutual influence and contradiction.  In our case, elementary stimuli 
are the partials of musical tones.  They are represented by probability 
distributions in a perceptual space of pitch.  This presentation is formed on lower levels; we are not 
going to enter into details here. 
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The pitch is measured by the logarithm of the frequency of a partial:  logarithmic scales 
appear already on the sensation level.  It is convenient to choose the binary logarithm so that the 
octave interval corresponded to the unit pitch difference. 

We describe the distributions by the Gaussian curves (2.12) because, according to a theorem 
of the probability theory, this is the limit distribution for a sum of a sufficiently large number of any 
small fluctuations.  Thus, it is the distribution that is most likely formed on the lower levels. 

The center of the distribution hj — the position of its maximum — specifies the pitch 
localization of a partial, and the dispersion σ determines diffusiveness of the perceived image.  One 
should not mix up this diffusiveness with the physical dispersion of the external sound or with the 
physiological limit of distinguishing different pitches δ .  Depending on the purpose, the perception 
may be tuned to any rougher scale σ > δ .  The dispersion σ is determined by a particular level of 
perception (Section 6 and further), and we assume it to be the same on that level for all the partials. 

In describing the interaction of elementary stimuli we follow Golitsyn’s ideas [11].  The two 
stimuli play different rôles:  one — f0 (x) with the center h0 , ‘old’ — is a reference point;  the other 
— f1 (x) with the centre h1 = h0+R, ‘new’ — is compared to it.  At first, a mixture of the stimuli is 
formed 

)()()1()( 10 xfxfxF µ+µ−=  (3.1) 

with a small weight µ << 1 .  As a result of the mixing, the maximum of the distribution (3.1) shifts 
with respect to the old center by a distance 

)(
2
1exp 222 µ+






 σ−µ= ORRr  (3.2) 

to the point h = h0+r .  Man tries to represent the complex signal (3.1) in a uniform manner (2.12).  
The simplest way to achieve this is to follow the shift (3.2) of the center, obtaining as a result the 
standard Gaussian distribution f(x) with a new center at h and the same dispersion σ as for all the 
partials.  The informational measure of the novelty of f as compared to f0 is calculated through 
formula (2.13): 

( ) )(exp)(
2
1

2
1)( 32222222

0 µ+σ−σµ=σ=∆ ORRrff . (3.3) 

Thus, the information that corresponds to the change of the old image due to the appearance 
of a new stimulus is determined by 

( )2222 exp)()( σ−σ= RRRd  (3.4) 

the mixing parameter µ giving only an unessential overall factor.  Quantity (3.4) is called the 
discordance value for the two partials.  It has a maximum at R=σ , when the distance between the 
stimuli is equal to their dispersion.  Trivial (R << σ ) or too far-away signals (R >> σ ) convey no 
information.  Function (3.4) is even, d(−R) = d(R) , therefore, it makes no difference which of the 
partials has been selected as old and which as new:  the discordance effect is mutual. 

4. The discordance function for compound tones 

The strongest assumption we make is that of additivity:  the discordance for a complex signal with a 
discrete spectrum is given by a sum of the discordance values for all the pairs of its distinct 
harmonics proportionally to their amplitudes.  Such a linearity is connected with a certain selection 
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of the perception level [1].  It is supported by an analogy with quantum mechanics:  the discordance 
can be considered as an expectation value (on a superposition of partials) of an operator defined by 
its matrix elements between elementary tones. 

We should point out a restriction which is necessary for consistency of the additivity 
hypothesis: either individual partials must be physiologically well-discernible R >> δ , or their 
mutual discordance d(R) ought to be negligible, so that the effect would be equivalent to one 
harmonic of the sum amplitude.  This leads to the condition δ << σ :  the dispersion that we deal 
with can never approach the physiological limit. 

Unlike noises, musical tones possess a natural harmonic series of partials with frequencies 
nη ,  (n = 1 ... N) , the frequency of the ground harmonic being η .  The internal image of a tone 
includes a set of amplitudes {tn}N  for N perceived partials.  We call this set the internal timbre.  It 
should by no means be directly identified with the physical spectrum of the external sound, which is 
drastically transformed in the sensory activity [1, 19].  Particular values of N and tn ≥ 0 (controlled 
by higher levels of perception) are fixed for all tones on the chosen level.  We ignore boundary 
effects of extremely high or low pitch and do not involve phases of the partials.  Any inharmonic 
overtones can be treated in the same way;  however, the proportional partials are most important to 
study. 

Consider an interval h comprising two compound tones which have different ground 
frequencies η1 = 2hη0 .  According to the additivity hypothesis, the discordance for this complex 
signal consists of two contributions.  One is due to the mutual discordance of the partials of 
different tones 

∑
=

+=∆
N

nm
nm nmhdtth

1,
2 )]/(log[)( . (4.1) 

Another relates to the discordance of each tone’s partials between themselves.  The latter 
contribution does not depend on the size of the interval and equals ∆(0) .  Thus, quantity (4.1), 
called the discordance function, accumulates the total information about the discordance of 
compound tones. 

Function (4.1) gives a primary description of a musical scale.  As a timbre {tn}N , a dispersion 
σ , and a reference point (key) are fixed, the ∆(h) minima determine a set of tones — degrees of a 
scale — which form a congruous unity with respect to the key.  On the other hand, occurrence of 
tones near the maxima of the discordance function may indicate that the unity becomes inadequate.  
This may give rise to higher-level processes of resetting the scale — modifying its origin, 
dispersion, or timbre — to adapt it to the situation. 
In principle, on the level considered here, parameters {tn}N and σ >> δ may be arbitrary.  We could 
try various combinations, selecting the most suitable ones to describe the known musical 
phenomena.  In fact, we have done this.  However, there are theoretical higher-level criteria to pick 
out more preferable, stationary values which reflect natural tendencies of the perceptional tuning.  
The following exposition may be considered as introducing higher-layer parameters in the sense of 
[20]. 
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5. A criterion of timbre stationarity 

Human brain is known to be a nonlinear system.  In data processing, the perceived signal is subject 
to multiple nonlinear transformations [1, 2].  As a result, for instance, combination frequencies are 
heard, which are sums and differences of the physical-spectrum lines.  These facts force us to 
assume that only those timbres may be fundamental which are not easily destroyed by nonlinear 
transformations, are robust enough, insensitive, immune to nonlinear attacks. 

With an internal timbre {tn}N we associate a periodic (in time T) signal 

∑
=

=
N

n
n TntTF

1
)2cos()( ηπ . (5.1) 

The ground frequency η may be arbitrary here.  The essential in formula (5.1) of setting the phases 
for all harmonics to zero is discussed below.  Consider the simplest kind of a nonlinear 
transformation, the quadratic one Q , which creates a new signal by the rule 

)()( 2 TFTF Q→ . (5.2) 
The decomposition of the squared signal into partials 
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involves combination frequencies with the amplitudes 
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(5.1). 
The ‘closer’ is {qn} to {tn}, the more stationary is the timbre.  To compare timbres, we use the 
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It has the meaning of the squared cosine of the angle between q and t in an (infinite-dimensional) 
vector space with the scalar product 

∑
∞

=
=

1
),(

n
nntqtq  . (5.6) 

In other words, the τ criterion (5.5) measures the relative intensity of that part of vector q, which is 
proportional to t, the other part — the distortion — being orthogonal.  In the theory of pitch-class 
sets an analogous criterion was used to compare set classes [21]. 

For any {tn}N , always 0 ≤ τ < 1 .  If τ = 0, the transformed timbre {qn} has nothing in 
common with the original pattern {tn}.  In contrast, when τ approaches 1, the quadratic 
transformation (5.2) creates a timbre almost identical to the original.  Moreover, if there were no 
distortion at all, τ=1, the timbre would be immune to an arbitrary-degree nonlinearity rather than the 
quadratic alone.  Timbres with high τ are called stationary. 
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Table 1.  The τN timbres. 

 τ7  τ9  τ12  τ15  τ19  τ25  τ30  
 0.9037   0.9162   0.9259   0.9313   0.9355   0.9391   0.9409   τ 
 0.5478   0.4884   0.4267   0.3836   0.3422   0.2995   0.274    t1 
 0.5042   0.4629   0.4131   0.3754   0.3375   0.297    0.2724   t2 
 0.4395   0.4238   0.3919   0.3624   0.3299   0.293    0.2698   t3 
 0.3603   0.374    0.364    0.3451   0.3196   0.2875   0.2662   t4 
 0.2741   0.3166   0.3306   0.3239   0.3069   0.2806   0.2616   t5 
 0.1884   0.2554   0.2931   0.2995   0.2919   0.2724   0.2562   t6 
 0.11     0.1937   0.2528   0.2725   0.275    0.263    0.2499   t7 
          0.1348   0.2112   0.2436   0.2565   0.2524   0.2428   t8 
          0.0815   0.1697   0.2136   0.2367   0.2409   0.235    t9 
                   0.1296   0.183    0.2158   0.2286   0.2265   t10 
                   0.0921   0.1526   0.1943   0.2155   0.2174   t11 
                   0.0581   0.1231   0.1724   0.2017   0.2078   t12 
                            0.095    0.1506   0.1875   0.1977   t13 
                            0.0688   0.1289   0.173    0.1872   t14 
                            0.0449   0.1079   0.1582   0.1763   t15 
                                     0.0877   0.1434   0.1652   t16 
                                     0.0686   0.1286   0.1539   t17 
                                     0.0507   0.114    0.1426   t18 
                                     0.0343   0.0997   0.1311   t19 
                                              0.0857   0.1197   t20 
                                              0.0723   0.1084   t21 
                                              0.0594   0.0973   t22 
                                              0.0473   0.0864   t23 
                                              0.0358   0.0758   t24 
                                              0.0252   0.0655   t25 
                                                       0.0556   t26 
                                                       0.0461   t27 
                                                       0.0371   t28 
                                                       0.0286   t29 
                                                       0.0206   t30 

 
The choice of zero phases in formula (5.1), in a sense, corresponds to a worst-case situation.  

With the present choice, the intensity of the combination signal (5.3) is maximal:  all the 
contributions to equation (5.4) are nonnegative, and there are no cancellations which would occur 
under a special phase selection. 

Once the stationarity criterion has been introduced, we may set out a task of searching for the 
most stationary timbres — called τN timbres — which have the maximal τ, possible for a given 
number of partials N.  The problem may be solved numerically.  The results are shown in Table 1, 
where timbres are normalized to the unit intensity, 

1),(
1

2 == ∑
=

N

n
nttt  (5.7) 

according to the form of the scalar product (5.6).  The amplitudes of the partials tn decrease 
smoothly with increasing n.  The dependence resembles very much the Gaussian law (2.12). 
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Figure 1. Discordance function plots for the τ12 timbre with 
various values of the dispersion σ .  The pitch h is measured  
logarithmically in fractions of the octave which corresponds to the 
frequency ratio of 2:1.  Positions of the natural intervals are 
marked  by vertical lines. 

 
The obtained timbres permit us to evaluate the discordance function with various dispersion 

values.  As an example, Figure 1 demonstrates ∆(h) curves with σ = 0.0233, 0.0368, 0.0637 for the 
τ12 timbre.  Distinct minima are observed for ‘harmonic’ intervals with simple frequency ratios, the 
‘sharper’ σ leading to a more detailed picture. 

As we became aware much later than our discordance functions have been computed for the 
first time, very similar curves had been obtained yet by H. Helmholtz for describing a subjective 
feeling of dissonance [22].  Moreover, he has found out that the perceived effect depends on the 
timbre of sound and that higher harmonics generate a more complicated picture of minima and 
maxima.  H. Helmholtz, however, believed that all this can be derived from physiology alone, he 
did not take into account the possibility of various perceptional tuning and the corresponding 
higher-level regularities. 

As concerns the τN timbres constructed by merely requiring the maximum stationarity, an 
important observation is that narrow intervals, like the diatonic second, cannot properly be 
described with their aid, even at a larger number of partials N.  This is one of the reasons for seeking 
other higher-level principles of timbre selection we proceed to, bearing in mind the necessity of 
always sticking to stationary-enough timbres. 

6. The discordance Fourier spectrum. Optimal timbres 

Consider now the discordance function (formed on the ground of a timbre {tn}N and a dispersion σ) 
as a self-contained object of perception.  It is reasonable to assume that perceiving the ∆(h) structure 
implies distinguishing its different ‘rhythmic’ components (periodic in the pitch space).  
Mathematically, this is performed by the Fourier transformation 
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A maximum in the ∆~  magnitude (6.1) at a point ν corresponds to a ‘rhythm’ in ∆(h) with the rate of 
ν degrees to the octave. 

The additivity hypothesis and the overtone-series structure lead to a particular form of the 

Fourier spectrum (6.1) for the discordance function (4.1):  it splits in two factors t∆∆=∆ ~~~
σ  ,  

( )2222/1)(~ νσππσνσ −=∆  (6.2) 
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Surprisingly enough, the σ factor (6.2) proves to coincide exactly with the G2∇  filter 
introduced by D. Marr [10] for general reasons.  We see that the ‘rhythmic’-structure essence of a 
scale is contained in the timbre factor (6.3).  Applying to it filters (6.2) of various measure, we may 
emphasize one or another specific ‘rhythm’.  With the Fourier-spectrum tool we can analyze timbres 
for their inherent ‘rhythms’, worth emphasizing.  Such an analysis of the τN timbres immediately 
exhibits the distinctly preferable scales well known in musicology.  However, to reveal these scales 
in their full development and to get a systematic detailed description of them, we introduce a 
concept of an optimal timbre. 

The fundamental principle is regularity:  a good scale should have a manifest leading periodic 
component.  Thus, we maximize the discordance Fourier-transform amplitude with respect to the 
parameters of our model, maintaining the normalization (5.7) of the timbre.  Regularity is not just a 
demand of the strictly equal temperament;  other, nonleading ‘rhythms’ are not supposed to be 
cleared out or suppressed unless they diminish the main Fourier maximum.  Neither do we restrict 
beforehand the rate to be an integer (preconceiving the pure octave):  ν is rather a tuning parameter 
for a local maximum, too. 

The regularity of a scale may be quantitatively estimated by the leading-‘rhythm’ amplitude 

)(~ ν∆  .  The dispersion parameter σ enters only into the filter factor (6.2).  Maximizing its 

amplitude, we find 

νπσ 2)32(1 += −  . (6.4) 

With this choice the whole σ factor (6.2) is proportional to the ν reciprocal.  Thus, ννν )(~)( t∆=ℜ  

is the regularity measure, to be maximized in ν. 
The mathematical problem of maximizing an expression of the form (6.3) 

2

1
)exp(∑

=
=

N

n
nn it αφ  (6.5) 

in parameters tn ≥ 0 restricted by the normalization condition (5.7), with N and a set of real αn fixed, 
has an exquisite self-consistent solution.  The nonzero (active) amplitudes are given by 
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.}){()cos( nnAt nn ∈−= αα  (6.6) 

normalization (5.7) determines A;  and α should be the average phase on the subset of active partials 
{n}, 

)exp()exp(
}{

n
n

n iti ααφ ∑= . (6.7) 

Under these assumptions, one can check that the variation of φ (6.5) in {tn} is proportional to the 
variation of the normalization condition (5.7); this ensures a conditional extremum. The solution to 
equations (6.6), (6.7), and (5.7) for α, φ, and A is 







 ++==







 ++=

− 222

22

2
1

tan

scNA

sccs

aφ

α
 (6.8) 

where ∑= }{ )2(
sin
cos

n ns
c

α , and Na is the number of active partials.  All one has to do, to find the 

maximum φ, is examine possible subsets {n} with the aid of equations (6.8) and (6.6) for 
consistency:  }{0)cos( nnn ∈⇔>−αα . 

Now we can start constructing optimal timbres.  For any selected rate ν and a number of 
partials N, we compute nn 2log2πνα =  and φ (6.8).  A fine tuning of ν is done to achieve the 

highest νφ /=ℜ .  The historical evolution of musical scales is globally directed to sharpening σ — 

that is, increasing ν, equation (6.4), — and simultaneously to mastering higher overtones — greater 
N.  Starting with ν = 1, N = 2, we enable two additional partials for every next scale, cutting the 
trailing new harmonics that themselves naturally remain inactive.  Thus, a sequence of optimal 
timbres νN is generated (Table 2:  only stationary-enough timbres with τ ≥ 0.5 are listed).  Before 
discussing these results in detail, we ascend one more level of the scale-structure perception. 

7. Formation of scale zones 

So far, we have not given a precise definition of a scale degree.  It is not quite clear whether a 
minimum of the discordance function is pronounced enough to represent an essential part of the 
scale.  Here we give an answer to a more correct question of defining zones, for a given ∆(h), inside 
which any tone represents the same entity, agreeable with the key, while tones outside the zones are 
regarded as dissonant to the scale.  The proposed mechanism of comparison with a local average 
level describes the result of adapting the perception to a repeatedly reproduced image. 

The belonging of a tone h to a zone is defined through the dissonance function derived from 
the primary discordance: 

)()()()( ),( xfxdxhh h λ∆−∆= ∫
+∞

∞−
 . (7.1) 

The integral represents a local average with the Gaussian weight (2.12), the center and dispersion 
being h and λ.  Whenever the discordance is lower than the local average level, (h) < 0, the tone 
does belong to a scale zone.  Formula (7.1) looks very simple in terms of the Fourier spectrum (6.1): 

[ ] )(~)2exp(1)(~ 222 ννλπν ∆−−= . (7.2) 
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Table 2.  The optimal timbres with τ ≥ 0.5 

 4 6 7 9 11 12 14 15  N 
 1.9622  3.0407  3.8809  5.0138  6.0246 6.9428 8.1129 8.9324 ν 
 0.7312  0.7275  0.6617  0.6718  0.536   0.7248  0.5234  0.611  τ 
 1.701   1.366   1.163   1.423   1.228   1.249   0.9123  0.9336 ℜ 
 0.5466 0.4897 0.4648 0.3743 0.3666 0.3353 0.3625 0.3457 t1 
 0.5382 0.4814 0.3915 0.3722 0.3664 0.3328 0.2354 0.3235 t2 
 0.4023 0.1796 0.2098 0.3559 0      0.3338 0.2759 0.1725 t3 
 0.4996 0.4418 0.109  0.3674 0.3575 0.2879 0      0.2437 t4 
        0.4661 0.4584 0      0.3638 0.2063 0.2415 0      t5 
        0.2893 0.4405 0.3646 0      0.3345 0.3675 0.281  t6 
               0.4132 0.3296 0.2994 0      0.1186 0.2971 t7 
                      0.3598 0.34   0.2062 0      0.1206 t8 
                      0.2979 0.3155 0.332  0      0      t9 
                             0.3676 0.2879 0.3637 0      t10 
                             0.177  0.3269 0.3071 0.2929 t11 
                                    0.2925 0.2818 0.3394 t12 
                                           0.3511 0.3193 t13 
                                           0.3167 0.344  t14 
                                                  0.2892 t15 

 
Table 2.  (continued) 

 17  19  20  22  23  25  26  N 
 9.9943   11.0209   12.0063   12.9647   13.8934   15.0397   15.9196  ν 
 0.6306   0.5421   0.6479   0.5616   0.5708   0.6056   0.5426   τ 
 1.007    0.9628   1.139    0.9227   0.9095   0.8827   0.7899   ℜ 
 0.3115   0.3062   0.2704   0.2881   0.2747   0.2739   0.2701   t1 
 0.313    0.3064   0.2704   0.2864   0.2529   0.2612   0.2756   t2 
 0.209    0        0.2667   0        0.2647   0.1577   0        t3 
 0.3142   0.3014   0.2699   0.2707   0.1219   0.2323   0.2121   t4 
 0.038    0        0.1909   0.2151   0        0.2492   0.2814   t5 
 0.2004   0        0.2647   0        0.2667   0.2082   0.0907   t6 
 0.2741   0.2764   0        0        0.2732   0.0313   0        t7 
 0.3149   0.2911   0.2691   0.2416   0        0.189    0.0957   t8 
 0        0.2728   0.2539   0.2222   0.2501   0        0        t9 
 0.0492   0        0.1983   0.2523   0.1077   0.2699   0.2552   t10 
 0        0.2305   0        0.1897   0.2298   0.2663   0.2067   t11 
 0.1915   0        0.2623   0        0.1536   0.2459   0.2086   t12 
 0.3149   0.0403   0        0.2884   0        0        0.2712   t13 
 0.2795   0.2915   0        0        0.2558   0        0        t14 
 0.2841   0.2941   0.2229   0        0        0.0318   0.0134   t15 
 0.3152   0.2758   0.2678   0.2008   0        0.134    0        t16 
 0.2244   0.299    0.243    0.2889   0.1252   0        0.2091   t17 
          0.2889   0.25     0.2575   0.276    0        0        t18 
          0.1036   0.2704   0.2475   0.266    0.2195   0        t19 
                   0.2054   0.2772   0.2457   0.2739   0.1653   t20 
                            0.2793   0.2623   0.249    0.2771   t21 
                            0.137    0.2809   0.2417   0.2737   t22 
                                     0.2078   0.2645   0.2625   t23 
                                              0.2684   0.2744   t24 
                                              0.1644   0.2784   t25 
                                                       0.1999   t26 
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Table 2.  (continued) 

 28  30  31   36      50      N 
 17.0311   18.1164   18.939    22.0135  ...  30.9714  ... ν 
 0.5814   0.5065   0.6692   0.6391      0.646       τ 
 0.993    0.7509   0.9636   0.8441      0.8457      ℜ 
 0.2421   0.2621   0.2296   0.2319      0.1945      t1 
 0.2419   0.2415   0.2301   0.2308      0.1947      t2 
 0.2411   0        0.2231   0.1818      0.155       t3 
 0.2324   0.0976   0.1972   0.2279      0.1888      t4 
 0        0.2682   0.2339   0.1726      0.1763      t5 
 0.2427   0.0655   0.2334   0.1933      0.1738      t6 
 0.0717   0.112    0.0723   0.0751      0.1902      t7 
 0.2141   0        0.1358   0.2235      0.1767      t8 
 0.2396   0        0.2138   0.049       0.0689      t9 
 0        0.1729   0.2205   0.1588      0.1584      t10 
 0.1996   0        0        0.128       0.1056      t11 
 0.2351   0.2244   0.21     0.2035      0.1869      t12 
 0.2429   0.2711   0.1764   0           0           t13 
 0.1154   0.2482   0.1503   0.0934      0.1792      t14 
 0        0        0.2314   0.2318      0.1942      t15 
 0.1877   0        0.0547   0.2174      0.159       t16 
 0        0.2707   0        0.2305      0           t17 
 0.2431   0        0.2339   0.0681      0.1004      t18 
 0        0.2339   0        0           0           t19 
 0        0        0.1752   0.1439      0.1354      t20 
 0.0623   0        0.0472   0           0.1851      t21 
 0.2227   0        0        0.1112      0.1333      t22 
 0.2398   0.2281   0        0           0.1452      t23 
 0.2186   0.2687   0.1561   0.2122      0.1941      t24 
 0.2165   0.2303   0.2325   0.0287      0.1072      t25 
 0.236    0.205    0.2211   0           0           t26 
 0.2377   0.2194   0.2019   0           0           t27 
 0.1547   0.2576   0.2065   0.1111      0.1624      t28 
          0.2655   0.2278   0.2177      0           t29 
          0.1644   0.2279   0.23        0.1949      t30 
                   0.1482   0.2146      0           t31 
                            0.2098      0.1361      t32 
                            0.2217      0.0029      t33 
                            0.2319      0           t34 
                            0.2006      0.1397      t35 
                            0.0866      0.1288      t36 
                                        0           t37 
                                        0           t38 
                                        0           t39 
                                        0.108       t40 
                                        0.1845      t41 
                                        0.1933      t42 
                                        0.1743      t43 
                                        0.1567      t44 
                                        0.1536      t45 
                                        0.1662      t46 
                                        0.1862      t47 
                                        0.195       t48 
                                        0.1657      t49 
                                        0.0763      t50 
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In principle, the local-average volume λ may be an independent parameter. However, we set it 
equal to the dispersion of all the stimuli λ = σ.  Choosing λ >> σ would only subtract a constant 
partial from ∆, retaining the h dependence unchanged.  In contrast, λ << σ would almost cancel ∆, 
leaving a very small dissonance function (h), proportional to the second derivative of ∆(h), so that 
any bend would form a zone.  The choice of λ = σ corresponds to the critical lowest value for which 
the local average of the elementary discordance d(h) has no minimum at h = 0 and thus really 
represents an average.  Thus, our σ-universality choice seems reasonable.  By construction, zones of 
one fixed level never overlap.  Changes in zone widths and their possible overlap [3] should be 
attributed to a mixing between levels with different σ values. 

From formula (7.2) with λ = σ we see that only the filter ~
∆σ  is changed in the dissonance 

Fourier spectrum to 

[ ]( ) ( )222222222 exp2/1)2exp(1)(~
νσπνσπνσππσνσ −−−−= , (7.3) 

the timbre factor remaining untouched.  The optimal dispersion for ζ degrees to the octave is now 
determined by maximizing in σ formula (7.3) at ν = ζ: 

)exp()163(14

2/
22

1

CCCCC

C

−+−=+−

= − ζπσ
 (7.4) 

where the greater root of the equation C = 3.863 973 234 654 32 replaces 32 +  as compared to 
formula (6.4). 

To tune to a regular scale, we choose an optimal timbre (which specifies the rate ν) and a 
dispersion (7.4) according to ζ = ν.  Then the dissonance function (h) realizes the most 
pronounced scale with ν zones to the octave. 

However, the perception may as well be not so sharply concentrated as to stick to the basic 
scale all the time. It may relax, allowing a wider dispersion σ, that is, filtering a slower effective rate 
ζ < ν.  In this way, various-level substructures of the scale may be revealed.  The necessary 
condition is, of course, the presence of the ζ ‘rhythm’ in the timbre factor (6.3) — an example of the 
regularity spectrum for the optimal 1220 timbre is presented in Figure 2. 
 

 
 

Figure 2.  The regularity spectrum of the 1220 optimal timbre.  The curve shows 
which substructures with effective rate of ν degrees to  the octave can apparently 
be revealed in the scale. 
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Simultaneously with widening the dispersion, the redundant higher partials may be ‘switched 
off’, to economize the efforts of distinguishing them on lower levels of perception.  The likeliest for 
a rate-ζ substructure is a reduction to that number of partials Z which corresponds to an existing 

optimal timbre ζZ .  This also improves the regularity ),/(/)(~)( ttt ζζζ ∆=ℜ  and suppresses the 

noise background ∆(0) for the substructure.  So, ζZ reductions form a system of imbeddings in the 
basic scale νZ . 

As an example, in Figure 3 we show the dissonance-function plot for scale 1220 and its 
reductions to 710, 59, 36, and 24 (ζ and ν rounded to integers).  A further discussion of the curves, in 
connection with the notion of scale context, follows in section 9. 
 

 
 

Figure 3.  The dissonance function for various imbeddings in the commonly  
used 12-tone scale.  The marked regions where the function is negative  define 
the zones of the degrees of the imbedded sub-scales:  duotonic (harmony scale 
for pentatonic) ζ ≈ 2, triad (harmony  scale in the usual tonal music) ζ ≈ 3, 
pentatonic ζ ≈ 5, diatonic (common mode scale) ζ ≈ 7, and chromatic scale 
ζ ≈ 12.  Positive values indicate dissonances of the corresponding levels. 

8. Timbres and scales 

We have computed optimal timbres for ν ≤ 75.  Table 2 contains all the optimal timbres with τ ≥ 0.5 
up to ν = 22 and the only timbre with τ ≥ 0.6 at higher ν.  A remarkable correlation is observed 
between the stationarity τ and regularity νφ /=ℜ  for optimal timbres.  We also see that only 
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‘octaval’ timbres, with an approximately integer number of degrees to the octave, are stationary 
enough and therefore noticeable in music perception.  Nevertheless, a small octavity defect is 
always present, but still it falls inside the zone width, though coming sometimes up to 40% of 1/ν .  
The least octavity defects are found at ν = 10 and ν = 12.  Tetrachords and hexachords cannot 
appear in this way, because they are rather fragments of a scale than perfect scales, miniature 
functional ‘models’ of scales with less degrees, and their ‘rhythmic’ structure still belongs to some 
octaval scale. 

Optimal timbres generally feature a number of ‘blocks’ of partials with approximately equal 
amplitudes, separated by ‘holes’ or, maybe, some isolated harmonics.  Holding in mind the 
resemblance to speech perception [1], we call such blocks ‘formants’.  Then we find that the 
musical quality of a scale depends on the formant pattern of its optimal timbre.  Like in speech 
perception, the first and the second formants are most significant.  The intervals between the partials 
of the first formant indicate which intervals in the scale can sound in accord simultaneously, so we 
refer to the first formant as ‘harmonic’.  The length of the harmonic formant correlates with the 
richness of harmony in the scale, and musical hearing evolves in the direction of ever more complex 
chords.  The poorest are anomalous scales, with only the octave possible as a harmony.  Four 
partials in the harmonic formant give quintal scales which admit also the fifth (and the fourth) as a 
harmonic interval;  they are still rather poor for modern musical thought.  Tertial scales, with six 
partials in the first formant, introduce the third in harmony, which makes it rather good in most 
cases.  Though the most interesting harmony can be achieved in harmonic scales, with more than 
six partials in the first formant.  Only in such scales, harmony can freely use the seventh and the 
second. 

We refer to an interval that is generated inside the second formant as a ‘move’.  In turn, an 
interval between a partial of the second formant and a partial of the first formant is called a ‘jump’.  
Both moves and jumps define characteristic intervals of a mode, so we call the second formant 
‘modal’.  When harmonic intervals prevail, the scale is  harmonically labile, so that any chord may 
play a centralizing rôle, and music cannot be tonally organized in a wider range.  The opposite case, 
when modal intervals prevail, leads to modal lability, weak fixation of tonality in any melodic 
sequence.  In both cases, higher levels of musical hierarchy can hardly be built.  This property is 
usually exploited to produce some coloristic or stylistic effects, but generally it restricts the practical 
use of the scale [23]. 

Noting that the numbers of harmonic and modal intervals are equal to H(H−1)/2 and 
M(M−1)/2+MH, respectively, where H and M are the lengths of harmonic and modal formants, we 
can estimate the scale lability by 

)1(
2)1(log

−
+−

=
HH

MHMML . (8.1) 

Now, L < 0 indicates harmonic, L > 0 modal lability.  Well balanced timbres with 1<L  lead 

to stable scales, which can be used most universally, provided their optimal timbre admits a 
sufficiently developed hierarchy of scale imbeddings.  Note that τ timbres, as well as the ν = 2, 3, 4 
optimal timbres, possess only one formant and are absolutely harmonically labile, which is related 
to the absence of narrow intervals in such scales.  Of the lower-ν scales, we point to the ν = 5 and 
ν = 7 modally labile scales which correspond to the well-known pentatonic and diatonic.  As it 
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should have occurred, the pentatonic is quintal and admits only the 24 harmony of the fourths and 
the fifths.  The diatonic is tertial and therefore adopts the (major and minor) triads. 

The first universal scale appears at ν = 12 (L = 0.49).  This is a tertial scale, so there are some 
nuisances with the seventh and the second in diatonic chords.  But the rich hierarchy of imbeddings 
(Figure 3) makes it a rather versatile musical tool.  Then follow the scales with ν = 14, 15, 19, 22.  
The ν=14 scale is quintal, and it has a somewhat weaker stationarity.  The ν = 15 scale, which 
corresponds to the full major-minor system, can occasionally be found in musical literature, but the 
weak seventh partial makes it almost tertial, so, practically nothing new appears as compared to the 
12-tone system. 
 

 
 

Figure 4.  The system of imbeddings in the 19-tone scale.  A sub-scale of  
the seventh chord ζ ≈ 4 becomes well pronounced, and non-equally tempered 
ζ ≈ 12 hypermodes with their natural ζ ≈ 5 harmony appear as possible 
imbeddings in the ν ≈ 19 basic scale. 

 
Rather stationary and stable (L = 0.42) is the ν = 19 scale which can be considered as a 

harmonic generalization of the tertial 12-tone scale.  The more developed hierarchy of imbeddings 
(Figure 4) makes it preferable to the ν = 22 scale.  At higher ν , only the 3150 timbre possesses the 
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stationarity τ ≥ 0.6 , comparable with 1220 and 1931.  A greater number of partials than 50 can hardly 
be comprehended, just because the frequency range is limited;  thus, ν = 31 may be considered a 
higher limit for the number of scale degrees.  Still, the ν = 31 scale (proposed back in the 17th 
century by Christiaan Huijgens) is rather interesting from the musical point of view and is worth a 
more thorough examination. 

Higher partials usually concentrate in a vast ‘chromatic’ formant which is responsible for the 
distinction of narrow intervals.  The basic scale becomes thus more pronounced, quite like the 
higher ‘vocalist’s formant’ makes vocal performance more articulate.  Too long a chromatic formant 
may, however, lead to chromatic lability of the scale, that is, an easy drift from any musical 
structure by a narrow interval.  On the other hand, if the maximum chromatic move is too short, 
then some modal moves will not have chromatic analogs.  Also, for chromatic stability, the 
minimum chromatic move should be narrow enough, so that a chromatic alteration of a degree 
would not change its function. Chromatically stable scales are ν = 10, 12, 17, 19, 22, 31. 

9. Scale hierarchy and musical context 

The dissonance function generated by an optimal timbre with a certain ν still incorporates ‘rhythms’ 
other than the main one (ν degrees to the octave).  As the basic scale is fixed in mind, man begins to 
distinguish its finer features, tuning the perception to various ‘rhythms’ possible in the scale.  The 
Fourier transform of the dissonance function (6.3)×(7.3) shows which scales can thus be ‘imbedded’ 
in the basic scale, with the optimal timbre {tn}.  Our model specifies the mechanism of such a 
perceptional tuning:  leaving the same tn , we choose the dispersion σ according to formula (7.4), 
with ζ ≠ ν.  The natural timbre truncation takes place, as described in section 7.  The dissonance 
function that corresponds to the new ζ generates a new zone structure, still associated with the ν-
optimal timbre. 

Figure 3 shows the imbeddings possible in the 12-tone scale.  They form the scale hierarchy 
for ν = 12.  This hierarchy may unfold itself in various ways. For example, the systems of 
imbeddings 12 ⊃ 7 ⊃ 3 and 12 ⊃ 7 ⊃ 5 can appear.  If an imbedded scale is harmonically labile, it 
can play the rôle of harmony in the basic scale (as the imbedding ζZ = 36 in the ν = 12 scale).  A 
modally labile or stable imbedded scale defines a possible mode or tonality (ζZ = 59, 710).  Naturally, 
the reference tone of any imbedding may differ from the key tone of the basic scale, which just 
specifies the pitch of a layer in a musical piece. 

The movable hierarchical system of imbeddings represents in our model the current musical 
context, defining dissonances and tensions on various levels. In general, a dissonance on a certain 
level occurs whenever an actually sounding tone does not fit into the current imbedded scale of that 
level.  The tensions of a sound according to the imbedding with the discordance function ∆(h) can 
be estimated by the integral 

∫ ∆=
2

1

)(),( 21

h

h
dhhhhρ . (9.1) 

For example, in the 12 ⊃ 7 ⊃ 3 system of imbeddings, describing the usual tonal music, there exist 
harmonic dissonances (ζ = 3 level) and modal dissonances (ζ = 7 level), which can be resolved 
inside the 12-tone scale.  There are two ways of releasing the tension: a move to the nearest 
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consonance, distance defined by equation (9.1), and a change of the current imbedding system.  
Both of them take place in real music, and the detailed study of scale hierarchies would reveal 
possible solutions in any situation. 

The ν = 19 scale (Figure 4) admits modeling tonal music within the 19 ⊃ 7 ⊃ 3 system of 
imbeddings (Figure 5 shows how the keyboard of a piano should be organized).  Moreover, there 
exist 12-tone ‘hypertonalities’ predicted by A. Schönberg [6].  Some of them involve no diatonic, so 
that another system of imbeddings is needed:  19 ⊃ 12 ⊃ 5.  Here the ζ = 5 level plays the rôle of 
harmony in the 12-tone ‘hypermodes’.  Note that the 59 imbedding in the 1931 scale is harmonically 
labile, though the pentatonic ν = 5 is modally labile as an independent scale. 
 

 
 

Figure 5.  The keyboard of a 19-tone piano.  The usual keyboard contains just 
white and black keys.  The 19-tone keyboard has an additional row of red keys.  
Thus, instead of every black key, between the adjacent white keys there are now 
two intermediate degrees in case of a diatonic whole tone, while a diatonic 
semitone (B–C, E–F) is divided by a red key in half.  With the equal temperament, 
all the intervals between the nearest keys are the same (1/19 of the tempered 
octave which should be a little stretched to the frequency ratio 219/ν ≈ 2.00447).  
The white and red keys separately form diatonic 7-degree scales, while the black 
keys, as previously, assemble into a pentatonic.  Similarly to diatonic modes, 12-
degree  hypermodes of various structure can be constructed. 

Conclusions 

We have outlined a theory which is capable of treating the scaling on any level of musical 
perception.  In its static aspect, it describes all existing and possible in the future scales with regard 
to their musical value and expressive abilities.  Also, it shows how ever more complex scales have 
been forming themselves with the growth in the number of partials comprehended in musical tones 
and the tightening of the perceptional tuning associated with the dispersion σ.  The stages of scale 
development are embodied in the hierarchy of possible scale imbeddings, which is linked to modal 
and harmonic levels of music.  The model has been elaborated in the framework of a general theory 
of hierarchies.  The logic of hierarchical approach and applied musicological results are to be 
presented elsewhere. 

Though our theory is based on the history of the European music, it can be applied, with 
minor changes, to musical systems that do not lean so much on scaling, such as oriental modes, 
ragas, or modern serial and aleatoric investigations.  Any inharmonic overtones can as easily be 
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taken into account without complicating the mathematical formalism.  We have thus presented a 
novel outlook at the acoustic foundations of music, ascending from the sensory level of the 
Helmholtzian physiological acoustics to the psychophysics of perception. 
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