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Abstract 

Human activity and cognition cannot be modelled without accounting for development.  The 
principal directions of incorporating development in production systems, abstract automata and 
practical problem solvers are discussed in this paper.  A few generalisations of a “physical” 
definition of Turing machine are described, including second-order and hierarchical models. 
Considering the modification of the machine’s operation set and environment requires a new 
mathematics, which would incorporate self-modifying (reflective) axiomatic systems.  Schemes of 
explicit and implicit definitions are discussed, and the necessity of a conceptual closure of 
hierarchical development in science is stressed.  Universal features of development are described, 
distinguishing structural, systemic and hierarchical development. These features are indispensable 
to insure human-like behaviour in ensembles of Turing machines. 

1. Introduction 

Science of the XX century has been marked with intense interest to the problem of including the 
observer into the description of objective phenomena.  It was argued that, in some cases, the act of 
observation would interfere with the process observed and the correct description of reality should 
account for such perturbations.  The boundary between natural phenomena and their scientific 
description became vague, and this seemed to essentially limit human cognition.  The famous Gödel 
theorem added to the idea of inherent logical insufficiency of the human mind, inspiring numerous 
discussions and interpretations.  Some theoreticians still apply to incompleteness of formal systems in 
their metaphysical discourse (Penrose 1994, Stapp 1995).  However, most scientists do not share these 
fears and continue their work fully convinced that science is able to find out everything people need 
in their life and activity.  They understand that scientific methods cannot be reduced to formal 
systems, and even the development of mathematics follows the laws that have little in common with 
mechanical deduction. 

Still, the ways science describes the world could be made the subject of a particular investigation, and 
nothing prohibits the formation of new sciences studying it.  Actually, every science is aware of the 
limits of its applicability; moreover, the attempts to more exactly specify the applicability conditions 
often become a source of new discoveries.  Such methodological study may be more obvious in 
sciences whose subject is originally related to the description of the observer.  Thus, mathematicians 
intensely explore the foundations of mathematics, this activity being sometimes called 
metamathematics (Engeler 1983).  The analogous branch in cybernetics is called “second-order” 
cybernetics (Foerster 1981).  Also, many psychological works include an analysis of possible 
observer’s involvement. 
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Mathematical theory of computability is a typical example of “second-order” approach.  Generally, 
the subject of the theory is the operator’s ability to achieve some goal that can be specified in a formal 
way, which assumes the description of both operation and goal specification.  However, traditional 
models usually deal with formal systems with a predefined operation set, so that their behaviour 
basically remains the same.  This does not exactly match our conceptions of human creativity, which 
imply the possibility of inventing something “new”, not contained in the raw materials or instrumental 
skills.  The most prominent feature of human activity is that it may change any rules, adopting them 
only temporarily, at will.  This leads to the necessity of considering development, which may 
drastically change the very notion of computability.  As the operation set expands, new goals become 
attainable, and a higher-order theory has to describe the rules governing such expansion. 

The description of development may require new formal methods, since traditional logic demands the 
identity of the subject in any discourse, while development seems to repeatedly violate this identity, 
so that the basic axioms may become updated in the course of deduction.  This may sound absurd — 
still, this holds for the development of mathematics too, which necessarily combines formal and 
informal elements. 

To construct the models of developing problem solvers, one has to specify the properties of such 
“machines” related to development.  These general definitions are then to be implemented in the 
formal descriptions.  Thus, different kinds of development can be distinguished, including structural, 
systemic and hierarchical levels.  It can be argued that hierarchical organisation is necessary for 
efficient operation in complex environment (Efimov 1982), and one comes to formulating the general 
principles of hierarchy.  One of the most important features of hierarchical development is the 
interiorisation of any external activity through socialisation, as well as actualisation of internal 
processes, creativity. 

In this article, I assess the current state of computability studies from the developmental viewpoint.  I 
do not intend to derive any formal results, but rather indicate the search directions and explicate the 
ideas commonly implied.  Section 2 summarises the traditional approach to computability on the 
example of the Turing machine, in a “physical” formulation more suited for further generalisation.  
Some directions of generalisation are discussed in Section 3, including multidimensional, non-local 
and analogue Turing machines.  Second-order Turing machines are suggested as a more realistic 
model of human cognition.  Developing Turing machines are considered in that section, with the 
stress on evolving environment, productive activity and abstraction.  Formal aspects of development 
are discussed in Section 4, demonstrating the interlay of explicit and implicit definitions in both 
developing problem solvers and their mathematical descriptions.  Implicit definitions are of primary 
importance for development, and I suggest several universal schemes applicable in developing 
machines.  In conclusion, Section 5 specifies the general features of development to be implemented 
in the future models of human activity and cognition. 

2. Traditional computability 

Historically, computability problem assumed many forms.  The well known formulations include 
Turing machines, RAM machines, recursive functions, λ-calculus, Post systems, Markov algorithms 
and others (Cutland 1980).  The basic fact is that the class of “computable” elements is the same in all 
these theories.  The well-known Church thesis postulates that any other theory of discrete 
computations would give the same computable class.  This seems quite natural, since, in any case, one 
deals with finite sequences of operations from a numerable variety.  The details of enumeration are of 
minor importance for computability. 
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Adopting Church thesis, one may consider any model of discrete calculation as a representative of the 
same general category.  I choose the Turing machine representation, which stresses the idea of 
operation directly associated with certain aspects of human activity.  To enhance the analogy, I will 
define a Turing machine in a “physical” manner, different from the mathematical formulations proper: 

(1) The “universe” U = W+M. 
(2) The “world” W: 
 (a) a linearly ordered discrete set of possible locations X = {x} (“configuration space”); 
 (b) a discrete set of possible states S = {s} observable at any location; 
(3) The “machine” M: 
 (a) a discrete set of possible “internal” states C; 
 (b) a finite set of possible “operations” R, represented by a relation R: X×S×C → X×S×C; 
(4) Current state of the universe U: 
 (a) function s: X → S, the overall state of the world W as a field of local states s(x); 
 (b) x ∈ X, the location of M; 
 (c) c ∈ C, the state of M; 
(5) Operation cycle: 
 (a) the machine’s input: < x, s(x), c >; 
 (b) the choice of operation r ∈ R: < x, s, c > → < x', s', c' >; 
 (c) the machine’s action: x → x' = x + dx, s(x) → s'(x) = s(x) + ds, c → c' = c + dc; 
 (d) the new input < x', s'(x'), c' > initiates the next reaction, and so on. 

The machine’s operation is local: it may only change the state s of the world W in the point x where M 
is currently located.  In the classical definition, Turing machine may move to the neighbouring 
locations only, so that x' = either x, or x+1, or x−1 (that is, dx = 0, +1, −1). Evidently, the operation set 
R may be thought of as a set of corteges r = < dx, ds, dc >.  

Each operation cycle may be associated with the time increment dt = 1, so that the kinematics of U 
can be described by three functions x(t), c(t) and s(x,t) representing the external movement of M, the 
change of its internal state and the modification of the overall state of W.  Virtually, one might 
consider the sequence of operations r(t) (the “computation process”), and the dynamics of Turing 
machine could then be described by the equation set 

dx/dt = rx(x,s,c; t) 
ds/dt = rs(x,s,c; t) 
dc/dt = rc(x,s,c; t) 

At any moment, dynamics implies choice between the currently admissible operations (“decision”).  
This choice may depend on the current state of U in a more or less definite way.  Thus, one can 
consider a stochastic Turing machine, with every state < x, s, c > assuming a number of admissible 
operations < dx, ds, dc >, which may be chosen with definite probabilities.  In the opposite case, the 
behaviour of the machine may be entirely causal, so that the change of the state would be completely 
defined by the history of previous interactions. 

In this model, computability means the existence of a process r(t) transforming an initial state of the 
world si(x) into a final state sf(x).  In the process of computation, M would pass from the state 
< xi , ci > to the state < xf , cf >, with cf occasionally supposed to terminate (or suspend) the machine’s 
operation (Mendelson 1964; Gorbatov 1986).  The latter requirement agrees with the typical usage of 
a computer, while modelling human-like behaviour does not need such a restriction.  Human activity 
never stops, and any particular state is transitory in it.  Hence, computability is reduced to the 
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existence of a trajectory passing through two pre-defined points.  Such trajectory may be not unique;  
for stochastic Turing machines, one may associate every allowed trajectory with a non-zero 
probability (or a probability amplitude), whereas the selection of a definite trajectory (method of 
computation) in causal machines depends on the initial conditions. 

There are two major trends in computability studies.  One of them is primarily concerned with the 
kinematics of operation, investigating the possibility of constructing an operation set enough to 
transform one state of the world W into another.  However, practical applications require efficient 
procedures, rather than proofs of principal solvability (Chang&Lee 1973);  this leads to a closer 
investigation of dynamics.  Accordingly, one might distinguish two kinds of uncomputability: 
(a) kinematic uncomputability due to the essential incompleteness of the operation set, and 
(b) dynamic uncomputability due to the violation of time restrictions imposed.  However, the 
traditional theory of computability does not consider development, since the sets X, S, C and R always 
remain the same in the course of computation. 

3. Generalised Turing machines 

The Turing-machine model of discrete computation can be generalised in many ways.  Some of them 
may lead to new classes of computable functions. 

The first evident generalisation is multidimensionality:  locations x may be vectors, rather than single 
numbers.  Accordingly, the change in the machine’s location would mean that each coordinate is 
either increased by one, or diminished by one, or left the same.  It is rather evident that such 
generalisation would not change the computable class, as long as spatial points remain numerable. 

Also, one can remove the locality restriction, and consider machines which may: 

 (a) observe the state of W in the points other than the current location of M; 
 (b) change the state of W in several points, rather than a single point; 
 (c) move to a spatial point not adjacent to the current location. 

Again, this would not affect computability, as long as the operation set R remains finite.  The 
allowance for infinite operation sets would lead to a wider class of computable functions, since such 
infinity is implicitly reflective, as will be discussed in the following sections.  Infinite operation sets 
may provide a structural (static) description of development;  however, such description is insufficient 
for higher-order research. 

One more generalisation that may extend the computability class is analogue Turing machines in 
continuous space-time.  Continuum requires a different concept of computability, replacing discrete 
sequences of events with smooth trajectories.  Depending on the model of system dynamics, they will 
be either usual trajectories in the configuration space X accompanied with some “internal” movement 
in M, or evolution of virtual intermediate states in the stochastic (quantum) case, or any combination 
of these mechanisms.  As the time increment dt tends to zero, kinematic computability will be 
associated with the trajectories of finite length, rather than with finite sequences of acts.  As for the 
ordinary Turing machines, dynamic computability differs from kinematic computability, demanding 
that the trajectory connecting two spatial points should be passed in a reasonable time;  moreover, in 
the continuous case, there can be absolute dynamic uncomputability when a finite-length trajectory 
requires infinite time to pass due to the singularity of machine’s velocity distribution along the 
trajectory depending on the external force fields.  Analogue Turing machines may provide more 
realistic models of human reasoning, eliminating many restrictions of discrete models (Mulhauser 
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1994).  Still, the behaviour of analogue Turing machines remains, in a sense, predefined.  The focus 
just shifts from discrete orbits in a set to the topology of a manifold. 

One could consider Turing machines in an evolving environment, so that s(x,t) would change in time 
due to some external process beside the machine’s operation.  The equations of motion would then be 
rewritten as 

dx/dt = rx(x,s,c; t) 
ds/dt = rs(x,s,c; t) + fs(x,s; t) 
dc/dt = rc(x,s,c; t) + fc(c; t) 

The last of these equations accounts for the spontaneous evolution of the internal state of M.  Such 
time-dependent formalism requires a revision of the very notion of computability, since the initial and 
final states of the world W are no more stationary.  Thus, one might consider uniform computability, 
adiabatic computability, computability in average etc.  Still, passive evolution is a rather restricted 
sort of development lacking essentially human creativity. 

Within the Turing-machine model, development would affect either of: 

 (a) configuration space X; 
 (b) the set of possible states S; 
 (c) the set of internal states C; 
 (d) operation set R. 

The possibility of a change in X and S is most important:  it means that M can produce something new 
that had never existed in the world W before.  This is one of the distinctive features of specifically 
human behaviour, and any other changes can be argued to originate from that “material” productivity. 
 People do not merely rearrange the world — they replace it with another one, more suited for their 
life and activity.  The change in C and R means that M is apt to internal reorganisation, which would 
make it another machine, from the traditional viewpoint.  In human behaviour, such internal 
development may be relatively independent of external productivity. 

Development drastically changes the notion of computability, since any state of U becomes 
accessible, as soon as a special operation is added to the original set.  In common words, if something 
can be imagined, it can be done.  Sooner or later, someone would find the way to achieve what has 
been thought of as unachievable.  For a developing Turing machine, there are no uncomputable 
functions, and any proofs of unsolvability may only refer to a definite stage of development. 

However, the development of Turing machines should not be considered as arbitrary.  The very ability 
of breaking the rules may be governed by some “second-order” rules.  To specify them, one might 
follow the traditional line of mathematical development, specifying minimal generalisation of the 
traditional Turing model that would lead to a kind of self-modification. 

There is an evident possibility which implies one additional operation:  if a state of U has proved to 
be inaccessible from some initial state using the current set of operations R, the corresponding 
transition r = < dx, ds, dc > may be added to R.  However, this generalisation may be not minimal 
when movement obeys the “smoothness” restriction:  dx = +1, 0, −1 (with dc linking the “adjacent” 
states of M only).  In this case, one will have to modify the “expansion rule”:  if an uncomputable 
state is adjacent to a computable state, the transition to the former from the latter may be added to the 
operation set.  In general, consideration of such “minimality” will lead to discussing the reducibility 
of computational tasks (Cutland 1980; Efimov 1982; Gorbatov 1986). 
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This mechanism is much like space completion in mathematics, when every fundamental sequence is 
identified with a point of the space, thus being made convergent.  The key feature of such 
development is that M should be able to somehow “know” about an inaccessible point before 
introducing a new operation making it accessible.  In other words, the internal state of the machine 
should reflect the machine’s operation, including the formation of computational tasks.  Hence, 
Turing machine must be hierarchical, the higher level forming the “goals” for the lower-level 
computations.  One might consider such machine as a combination of two different machines:  one 
machine is to perform “calculations”, while another is to set up computational tasks (Efimov 1982).  
So, the principal mechanism of development is integration of functionally different machines 
moderating each other’s operation.  From the viewpoint of every one of these united machines, a part 
of the machine’s environment is interiorised, forming a new level of operation. 

The definition of such “second-order” Turing machine includes: 

(1) The world W = < X, S, s: X → S >, 
(2) Level-1 machine M1 operating on W, 
(3) Level-2 machine M2 operating on the “internal world” of M1:  W1 = < S, C, R >. 

The equations of motion for the two-level machine could be written as  

dx/dt = r1x(x,s,c; t) 
ds/dt = r1s(x,s,c; t) 
dc/dt = r1c(x,s,c; t) 

dr1x/dt = r2x(s,c,r1; t) 
dr1s/dt = r2s(s,c,r1; t) 
dr1c/dt = r2c(s,c,r1; t) 

Of course, the structure of the equations may be more complex, the last three equations being 
functional rather than ordinary differential equations.  The internal state of M1 may include the 
kinematics of M2, the equation of motion being essentially nonlinear (recursive).  Higher-order 
Turing machines can be constructed in the same way. 

The machine’s ability to change the external world and itself is related to the process of abstraction. 
The traditional definition of Turing machine implies explicit enumeration of operations from R, which 
is inappropriate for infinite sets X, S and C.  Thus, to specify increment by one as an elementary 
operation on S = {0,1,2,…}, one has to make R infinite;  however, one could introduce the abstract 
operation INC instead, transforming every s ∈ S into s+1, which would mean only one operation 
instead of the infinity of similar acts.  Evidently, abstraction is mostly due to machine’s “self-
observation” (reflectivity), a scheme derived from a number of special cases (Pospelov 1986). Since 
abstract operations can be generated from any finite number of samples, there may be cases when the 
result of operation is undefined, because there are no respective elements in X, S or C.  In human 
behaviour, there are two basic reactions to such a situation:  the formal result may be treated as ideal, 
and added to the collection of internal states C, or it may be implemented in external activity 
producing new elements of S or X (intensive or extensive development of the world).  In particular, 
external activity may become mediated by a series of internal transformations. 

4. Development in formal systems 

Formal description of developing Turing machines may require new mathematical methods, since the 
allowance for self-modification leads to apparent contradictions violating the identity of the subject, 
the axioms being updated during the discourse (Pospelov 1986).  Seeking for more rigor, one might 
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suggest that mathematics do not deal with development at all, and that mathematical models refer to a 
single level of development and work inside it.  Any axiom modification will be hence considered as 
switching to another model that should be treated separately.  However, this attitude does not help 
much since the very specification of the working level implies distinguishing it from the other levels, 
while considering any other levels would inevitably violate the “purity” of theory.  For instance, the 
mathematical idea of an operation assumes its complete specification:  one should exactly define how 
the operation is performed, and what would be its result for any given “arguments”.  This cannot be 
done in real life, where operations are never defined completely.  As a rule, the introduction of an 
operation involves some informal descriptions, which complement the explicit and implicit 
definitions. 

Explicit definition constructs a new operation as a combination of already existing operations,  the 
rules of composition forming a higher level of operation.  Several levels may be specified, but the 
highest level can never be introduced explicitly. Some mathematical theories merge these levels into a 
single “universe” with rather exotic properties (higher-order logic, Henkin 1950; nonstandard 
analysis, Davis 1977);  hierarchical representation might make the problems more tractable. 

A generalisation of the notion of Turing machine may include the rules of explicit definition in the 
operation set, which can thus be made extendible.  However, explicit construction of operations does 
not give much freedom for development, since one might consider complete (closed) operation sets 
only, where any composition of operations gives an operation from the same set.  However, the 
transitory processes preceding the formation of such complete sets may be of interest under special 
circumstances, when the rate of the machine’s operation is much higher than the rate of completing 
the operation set. 

In the implicit definition, a new operation is defined “by analogy”, using the constructions like:  “Act 
in the same manner as when transforming x into y.”  The actual ways of performance stay outside the 
theory, admitted they could be somehow discovered in practice;  in other words, implicit definitions 
are to be further explicitly reduced to some other primary operations, which will have to be unfolded 
in their turn.  Logically, an implicit definition of operation is a tautology:  operation g transforming 
input xin into output xout is just the ordered pair < xin, xout >.  Any set of such pairs may be called a 
“generic” operation, relation g: X → X.  However, this approach is not applicable to infinite sets, or 
analogue machines, and the traditional theory of computability generally sticks to finite alphabets and 
operation sets.  Still, implicit definitions model an important feature of real behaviour:  it is quite 
common in animals that reflex formation occurs via a momentary circuit closure, in a single try;  even 
if thus acquired behaviour proves to be inadequate, animals do not completely dismiss the first 
impression, other reflexes just moderating its action. 

Implicit definitions are most popular in mathematics, though they often lead to methodological 
problems.  The definition of a set by its characteristic property is a typical example:  “Let A be a set of 
all a that possess the property p.”  A cortege of n elements referred to as < x1, x2, …, xn > is one more 
instance of implicit definition.  Such constructions violate the traditional deductive scheme, but 
mathematics can never get rid of them.  Inductive definitions are employed for more rigor, but the 
induction rule itself contains a logical loop, since the presumed n-th step of induction is an implicit 
reference too.  So, to proceed with explicit constructions, one has to postulate some notions and rules 
appealing to “intuitive” abilities presumably shared by other people.  Therefore, mathematical 
reasoning does not produce any “truths”, and mathematical deduction is a method of elaborating a 
hypothesis rather than validating it. 
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Generally, with the allowance for implicit definitions, the process of completing the operation set via 
explicit combination of primary operations cannot be considered as transient, since the addition of a 
new implicit definition (or a new abstraction) will start the process of accumulating explicit 
constructions employing it.  This process may be not finished to the moment when another primary 
operation appears, the state of the machine thus becoming always “transitory”.  Of course, one may 
study adiabatic abstraction, when the operation set becomes complete before every new implicit 
definition.  Such smooth development would model some real cases, though it cannot cope with the 
revolutionary changes in human knowledge. 

Though development through explicit construction is more important in the machines able of implicit 
definition, it still remains just quantitative, lacking “true” novelty.  On the other side, the arbitrariness 
of implicit definition can only be tolerated to a definite extent, and one would necessarily try to 
investigate the mechanisms of implicit definition too.  There is a danger of an infinite succession of 
the “levels of implication”, when every newly discovered mechanism initiates the search for “deeper” 
mechanisms underlying it.  Modern physics may be an example, with molecules consisting of atoms, 
atoms constructed of nuclei and electrons, nuclei containing hadrons and mesons, which become 
reduced to quarks and gluons, and some physicists suggest that quarks might be “made” of still 
“simpler” particles (or fields). 

To avoid this “bad” infinity one might to arrange a “feed-back” from explicit to implicit definitions, 
so that accumulation of new combinations would result in a qualitative “jump” to a new kind of 
operation.  This effect is quite common in human activity.  Usually, single act is not enough to 
become aware of it as a representative of a new mode of action.  It is its reproduction in different 
circumstances that would stress the universality.  What looks like “instantaneous” solution, “insight”, 
is rather people’s communication folded in mental activity. 

In general, implicit definitions admit many possible explications, since the transition from x to y can 
be performed in many different ways.  This fact is quite obvious with mathematical functions defined 
as the sets of pairs < x, f(x) >:  there are many functions that assume value y in the point x.  In physics, 
such situations often arise in quantum theory, when a Hermitian operator is to be continued from the 
“on-shell” to the “off-shell” (unphysical) energies.  As a rule, the selection of the “true” branch 
requires considering asymptotic conditions imposed by the macroscopic measurement procedure. 

An implicit definition can be treated as a void position in a formal scheme.  Thus, if there is an n-
place formula assumed to be valid in all the cases under consideration, every one of n positions can be 
empty, which would define the entity completing the formula when substituted to the void position.  
For example, the dyad (a,b) assumes two forms of implicit definition, (?,b) and (a,?);  the triad (a,b,c) 
leads to implicit definitions of the form (?,b,c), (a,?,c) and (a,b,?), etc.  In a sense, implicit definition 
is opposite to the statement of existence:  instead of “There is a such that (a,b)”, one says:  “Let a be 
such that (a,b)”.  The well-known examples come from the school mathematics: −x is such number 
that x+(−x) = 0,  i is such number that i2 = −1, etc.  More academic definitions of these entities just 
explicate the implicit definitions introducing more implications elsewhere. However, the void-
position form of implicit definition is transparent and convenient for implementation in artificial 
problem solvers. 

Of course, the above schemes do not exhaust the possible forms of implicit definition.  Two more 
classes of importance are folding and unfolding schemes.  Thus, a new entity can be introduced as a 
“shortcut” for a n-place formula:  for example, let y stand for (a,b).  In programming, such folding 
may be illustrated by macro definitions, or inline functions.  However, inline functions may become 



P. Ivanov Computability in Developing Systems 

 9 

out-of-line in some circumstances (for example, in the debugging environment), or even grow into 
separate program modules, as the whole project develops.  The opposite case of unfolding scheme 
expands an element of a formula into a sub-expression.  For example, in the triad (a,b,c) the link b can 
be represented as (b(a),b',b(c)), distinguishing the sides of b relating to its connections with a and c, 
as well as the way b' of linking b(a) to b(c) “inside” b.  In particular, designation and substitution are 
special cases of folding/unfolding which are the basic operations of mathematical reasoning, though 
these operations are never explicitly defined in mathematics. 

In modern mathematics, some classes of problems become substituted with alternative “linguistic” 
formulations, when one does not prove a theorem, but rather proves that the proof can be formulated 
using a specially designed formal language.  Thus, the formulation of Gödel theorems by Mendelson 
1964 and Cutland 1980 replaces arithmetic with one of its formal descriptions, and thus the result 
obtained is the incompleteness of this type of description, rather than of arithmetic itself.  Another 
example is provided by nonstandard analysis, where all the theorems concern a formal description of 
the universe introduced rather than this universe proper (Davis 1977).  This is a “second-order” 
tendency in mathematics, since the focus of investigation shifts from the observable world to the 
observer. 

However, observer belongs to the same world, and one can notice that the transition from the “first-
order” to “second-order” science may be treated as a change in the subject producing another 
(interdisciplinary) science, which is as “positive” as the original, “first-order” research.  The “second-
order” version of this new science can be built in its turn — and so on to infinity.  An infinite 
sequence of levels can thus be unfolded starting from any science, either “positive” or not. 
Accordingly, there is a hierarchy of computability (solvability, verification etc.), since the formalism 
of any level may be found incomplete judging from the higher level only, which might be just an 
evidence of its own incompleteness.  Inversely, the very existence of the higher level assumes that 
some problems cannot be resolved at the lower levels, which means that they are essentially 
incomplete. 

From this viewpoint, it seems quite natural that, in seeking for the foundations of mathematics, any 
attempt to build a rigorous theory leads to the construction of many alternative theories, which are as 
acceptable, or as arbitrary.  The commonly known history of non-Euclidean geometry finds its 
continuation in the diversity of the definitions of fractal dimension (Fractals 1985), alternative set 
theories (Zadeh 1973, Vopenka 1979), the categorial formulation of mathematics (Goldblatt 1979). 

The infinite chain of incomplete theories can be folded in the abstraction of a new science describing 
the very method of generating the higher levels.  Such science would be completely characterised by 
any two adjacent levels, thus being a hierarchical synthesis of them.  On the other side, its distinction 
from the “first-order” approach would be completely defined by the “second-order” theory, while the 
“first-order” science would define the transition to the synthetic level from the “second-order” 
approach.  No infinite regression occurs in this way. 

An analogous triad of the levels of activity is well known in general psychology (Leontiev 1978); 
recently, Leontiev’s theory has been revised within hierarchical approach and applied to aesthetic 
perception (Ivanov 1994, 1995).  The conceptual cycle described would provide a kind of basic model 
for hierarchical mathematics, like the heating–cooling cycle of the ideal heat machine was a germ of 
modern thermodynamics.  The logic of this article demands that the same triadic organisation should 
be inherent in Turing machines if they are expected to exhibit human-like behaviour. 
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5. Phenomenology of Development 

A detailed investigation of developing Turing machines is yet to be performed.  Still, some general 
directions of research and features to describe may be predicted beforehand.  In this concluding 
section, I will give a brief summary of the hierarchical approach to the problem. 

Changing environment 

Individual development is only possible when an individual is placed in a developing environment. If 
the world W remains qualitatively the same, one may only speak about transitory development, which 
is bound to stop when all of the world becomes “comprehended” by the machine.  The assumption of 
infinite W does not alter this conclusion, as far as this infinity is merely quantitative. Thus, one cannot 
enumerate all the integer numbers in a finite time — still, their “idea” is readily comprehended in the 
operation of enumeration.  Actually, one does not need to further count integers after this basic 
operation has been formed. 

Three ways of the involvement of machine’s development in the development of the world can be 
considered: 

(1) Syncretic development.  Everything changes, and the machine changes as a part of the world. 
(2) Analytical development.  The machine changes its environment which demands for the new ways 

of adaptation. 
(3) Synthetic development. Each action implies changes in both the environment and the organisation 

of the machine. 

It may be readily seen that the first way corresponds to the level of physical existence, while the 
second and third levels could be associated with biological and conscious development respectively. 
Of course, the latter case attracts much more interest since it has to do with modelling human 
cognition. 

Levels of coherence 

As it has been noted for higher-order Turing machines, the basic mechanism of development is the 
synthesis of different objects into a kind of integrity.  Such synthesis may proceed in different ways: 

(1) Structural development.  New elements or new relations between elements are added.  Every 
element is principally equivalent to any other element, and all the relation are of generally the 
same kind. 

(2) Systemic development.  The components of the compound are functionally different.  Thus, 
systemic synthesis of two independent structures may assume that one of them becomes “input” 
while the other becomes “output”, the relation between them within the system differing from the 
uniformity of elements and relations within structure.  

(3) Hierarchical development.  This is the synthesis of structural and systemic development assuming 
that systemic development is reflected in the structures, and structural development leads to the 
distinctions in functionality.  Here, the integration of several objects into the whole means that 
they become the different levels of hierarchy, so that the structures and behaviour at the lower 
levels depends on the “control parameters” prescribed by the higher levels. 

Actually, development cycles through these stages, structures and systems becoming hierarchical.  
The hierarchical structure differs from the “plain” structure in that the elements become grouped into 
several distinct classes, so that the relations between the classes are distinguished from the relations 
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inside each class.  Naturally, the classes may be further grouped into “higher-level” categories, 
forming a multilevel hierarchical structure.  Hierarchical systems may be described in much the same 
way, their input and output structures becoming hierarchical. 

Reflectivity 

To insure that the synthesis of a few machines be more “powerful” than every one of the original 
machines, the machines to be combined should be different enough, possessing complementary sets of 
operations.  That is, different machines should be able to compare themselves, so that any one of them 
could borrow lacking operations from its neighbours.  In particular, a machine should be able to 
analyse its own operation set. 

Such an ability implies advanced communication between the machines.  Of course, the first premise 
is interaction.  However, it is not enough.  To serve for development, interaction must be reflexive, 
that is, the behaviour of one machine must influence its state through the feed-back from another 
machine.  To make development intelligent, one more condition must be satisfied:  the feed-back must 
involve the internal image of the machines in any one of them, and the internal image of their 
interaction.  It should not be mere dependence on the environmental changes caused by the agent, in 
which case only “biological” development is possible. 

Two implications are then to be considered.  First, the comparison of different machines should be 
performed on a common basis, which is provided by cultural integrity in the case of human activity. In 
other words, human-like development implies the existence of a “collective” level uniting many 
individual machines in a kind of society.  The interaction of any two individuals (and individual 
reflection in particular) is therefore never direct, but rather mediated by social organisation.  It means 
that either interaction of the machine with the world should be non-local, or (which is more likely) the 
immediate environment of the machine is “subjectively” perceived as the topmost level of a hierarchy, 
any physical event being just an indication of a global process. 

Furthermore, such socially mediated reflection becomes interiorised into a special operation of 
relating different individuals to each other.  That is, the individual operation set R should contain the 
operations of reflection, along with the traditional “productive” operations and the operations of self-
modification discussed above.  Hence, the internal hierarchy of the machine tends to reflect the 
hierarchy of the world.  In particular, every act of communication involves an internal image of the 
partner, actual behaviour being dependent on many folded communications with this internal model. 
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Comments 

Below, find a few remarks made on this paper by the reviewers of Cybernetics and Human Knowing, 
followed by my replies. 

Reviewer: 

This paper is a discussion of computing and Turing machines from a somewhat “second order” 
perspective. I am not too excited about it. It seems more or less journalistic to me, without any really 
new ideas. It does discuss issues that should be discussed in this journal, and it may stimulate 
conversations. 

Reply: 

Since the journal is quite popular and concerning the philosophy of “second-order cybernetics” rather 
than any formal issues, it would be strange if my submission were of a different kind. The paper was 
not intended to be an ordinary mathematical publication, with much technicality and poor 
understanding of the sense of the results derived. Rather, it had to suggest an alternative to the blind 
manipulation with symbols, up to the necessity of employing a way of reasoning different from the 
traditional deductive scheme. The reviewer did not notice that in the text, since he shared the common 
prejudices about “science-like” discourse and could not conceive any other forms of reasoning that 
are as precise, and more adequate for the subject under consideration. 

The end of the paragraph is a contradiction to the previous sentence: if the paper contained nothing 
new, how could it stimulate conversations? 

Reviewer: 

The author airs ideas which in general are of interest to the readership. However he is unable to 
simultaneously be precise and understandable, that is, he takes pains to provide (reasonable) 
mathematical definitions, but as soon as the conceptual terrain gets rough, he retreats to vague and 
airy prose. Moreover, I find serious problems in his discussion of and arguments regarding extendible 
Turing machines. But even if I’m mistaken here, he has a lot of explaining to do. 

Reply: 

Yes, the text is not readily understandable, since it is based on the notions far from the mathematical 
tradition, which could not be described in full in a paper subject to the usual size limitations (<5000 
words). Moreover, this new approach can hardly ever be formulated completely, since self-
development is one of its basic principles. There is a lot of explaining to do — but one of the ideas 
discussed in the paper is exactly that there can be no completely explicit formalism, and any 
mathematical paper is bound to contain something implicit in it, thus requiring a lot of explaining too. 
My paper is more honest than the bulk of other “scientific” works, since it does not try to hide the 
narrow places “under the carpet”. 

Indeed, I did not “take pains to provide (reasonable) mathematical definitions” — the definitions in 
the beginning of the paper just describe the usual notions, to fix the terms. There are no mathematical 
definitions in the paper, quite intentionally. The paper says that mathematical defitions are a very 
particular case of definition in general — so, I tried to avoid too much dependence on the traditional 
formalism, to stress the basic ideas. What seems “vague and airy prose” to the reviewer is actually 
never less precise than the usual mathematical methods, accounting for the implicitness inherent to all 
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the mathematical knowledge. I explicate what mathematicians try to hide behind the superficial 
formality. 

Furthermore, what sense would there be in publications which do not leave room for further 
development? Why not first announce a viewpoint. and then get engaged in explanations? The 
demand to present a “ready-to-consume” work looks most strange, since it is the basic mechanism of 
science to suggest hypotheses which are to be verified later on. 

Of course, I can agree that my style is not too crisp and clear — but I read many papers written in a 
language much more obscure and heavy, and this cannot be the true reason of the reviewer’s negative 
attitude. 

Reviewer: 

Although I appreciate from my own experience how difficult this topic is, I don’t feel that the author, 
in the final analysis, succeeds in presenting anything genuinely new. That is, anyone who has thought 
seriously about this topic arrives at much the same thoughts as the author, which accomplishment is 
not to be denigrated, but the problem is to get further. 

Reply: 

If the views I present are that obvious, why there are so few traces of them in the literature, and why 
there are so many quite opposite views, indicating a rather poor understanding of the problems related 
to development? Where are those who “thought seriously about this topic” and “arrived at much the 
same thoughts”? Are these thoughts forbidden to publicly discuss? I’m afraid, the reviewer’s 
awareness of these issues was the result of reading the paper, rather than his own achievement — and 
his desire to get further was an intended effect. This is what I wrote the paper for. 

Reviewer: 

I have suggested that the middle of the paper be deleted, and the author concentrate on his opening 
theme. But whether this suggestion is of any use or not, the paper as it stands must be rejected. 

Reply: 

The suggestion to delete the parts of the text that contain the new ideas might be an indication of the 
reviewer’s fear of them. I am advised to do nothing beyond the scope of traditional mathematics, and 
to never try to point to its insufficiency. But my interpretation of the traditional line seems too 
dangerous to the reviewer as well, and he says that the paper should not be published even if I 
removed any “bad” ideas from it. No further comment is needed. 
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