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MUSICAL SCALE HIERARCHY 

Pavel B. Ivanov 

 

Abstract 

L. Avdeev’s theory of musical scale hierarchy formation is discussed. The model provides an 
adequate mathematical description of the already known scales and reveals some other new 
possibilities. A measure of the information difference between two probability distributions is 
employed to construct a numerical estimate of a contradiction between two compound tones. The 
discordance function thus obtained allows to determine a musical scale. A dissonance function is 
introduced, which reveals the scale as a set of zones. Stationarity under nonlinear transformations 
and maximum regularity provide the numerical criteria for selecting the preferable scales. The 
formant structure of the internal timbre pattern characterizes the stability of local hierarchical 
structures. Harmonic, modal, and chromatic types of scale lability are described. Musical scale as a 
movable hierarchy of zone structures unfolds itself in various ways, forming the musical context. 

 

Introduction 

The traditional application of mathematics to music, from Pythagoras to now, is reduced to mere 
combinatorics and the search for statistical regularities. The insufficiency of such an approach has 
become evident in developing the tools for computer aided music composition. It has become clear 
that a human composer is never stochastic, and we need to comprehend the psychology of music 
perception, to model some aspects of composition. And, primarily, we need to explain the origin of 
the 12-tone chromatic scale as its principal material. In 1980s, Leonid Avdeev has suggested a 
consistent theory of scale formation (Avdeev & Ivanov 1993; Avdeev et al. 2006) based on the 
following principles. 

1. There is no direct correlation between physical properties of sound and the perceived intonation 
(Gelfand 1981; Pozin 1978). We rather construct an internal model of the sound and then try to fit all 
what we hear into this pattern. That is why we speak about sound perception, which assumes sound 
sensation shaped by representation (Ivanov 1994). 

2. Both pitch perception and intonation are of a zone character (Garbuzov 1948; Johnson 1966). 

3. Historically, mere pitch discrimination precedes the notion of a musical interval (Kvitka 1971). The 
fifth and the octave take their place in music rather late; hence one cannot seriously speak about 
combinatorial origin of musical modes. 

4. Generally, musical hearing evolved in the direction of distinguishing still higher overtones and a 
more detailed perception of timbre (Schönberg 1973). 

5. Any human activity is hierarchically organized (Moles 1958; Pribram 1971; Leontiev 1975), 
including the perceptual activity. 

6. Such musical phenomena as consonance and dissonance, tension, instability and steadiness arise 
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only in a specific context (Schönberg 1973), and the theory must somehow describe it. 

7. A detailed investigation of the mechanisms of perception gives little for the comprehension of 
perception itself. Rather, construction of higher-level models permits to bind physiological data 
together. 

8. Human perception is a kind of information processing, and its models should be compatible with 
information theory (Moles 1958; Pribram 1971; Golitsyn 1980). 

9. The available physiological and psychological data reveal the complex organisation of hearing 
(Gelfand 1981; Pozin 1978; Garbuzov 1948, 1956), and the theory must comply with those data. 

Hierarchical Scaling 

On the lowest level, the perception of a pure tone if pitch (logarithm of sound frequency) h is modeled 
with an inner pitch distribution 
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The dispersion σ is a historically formed parameter of perceptual tuning related to the overall 
sharpness of hearing (intonation distinction). 

A musical tone (abstracted from noises, phase effects, etc, which are unessential for the theory of 
scaling) is represented by its harmonic series, that is, the set of partials jh  with the amplitudes 

nt )1( Nn = . This set of amplitudes will be called internal timbre. This is a perceptual set only 
related to pitch hearing; it does not depend on the physical or perceived timbres of the musical 
instruments, since timbre hearing is a different activity. 

In the process of hearing, people establish relations between tones. Subjective interference between 
two partials can be estimated as a quantity of information in one distribution relative to another 
(Golitsyn; Avdeev & Ivanov 1993): 
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where R is the pitch difference. The quantity )(Rd  is called the discordance value for the two 
partials. For two complex tones represented by the internal timbre, the discordance is calculated as 
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This value characterises the contradiction of the two sounds, the difficulty of including them in a 
common system of tones. A few samples of discordance function given in Fig. 1 manifest a number of 
minima, which might be related to the possible degrees of a musical scale. 

On the next level, various tone structures formed of the minimally discordant tones are perceived. Not 
all timbres are of equal worth for articulated structure perception. Thus, if the timbre is not preserved 
during various inner operations, it will hardly become culturally fixed; the criterion of timbre 
stationarity 0 ≤ τ < 1 is introduced as a measure of the difference between the original timbre and its 
quadratic transform. Timbres with high τ are called stationary. 

However, mere stationarity is not enough for musical scale formation. The tuning of perception to a 
leading “rhythm” in the discordance function leads to a regularity requirements; stationary timbres 
producing regular discordance functions are called optimal timbres; they are the most suitable for 
scale formation. 
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Figure 1. Discordance functions. 

 

 

 
Figure 2. Discordance and dissonance. 
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The degrees of a musical scale can be introduced as some zones around the minima of discordance 
function. The belonging of a tone h to a zone is defined through the dissonance function derived from 
the primary discordance: 
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The integral represents a local average with the Gaussian weight. The discordance and dissonance 
functions are compared in Fig. 2. Now, one can define a musical scale as a collection of pitch zones 
(Garbuzov 1948). 

Computer-aided calculations permit us to find a series of optimal stationary timbres. The properties of 
some corresponding scales (for example, with 2, 3, 5, 7, and 12 tones to the octave) are well known in 
musicology. We can therefore understand how a timbre pattern correlates with the scale properties, 
and with a good certainty describe some new scales, hardly yet established in musical practice. 

It has been discovered that each optimal timbre has a well pronounced formant structure. The musical 
quality of a scale depends on the formant pattern of its optimal timbre. The partials of the first 
formant indicate which intervals in the scale can sound in accord simultaneously, so we refer to the 
first formant as harmonic. The length of the harmonic formant correlates with the richness of 
harmony in the scale, and musical hearing evolves in the direction of ever more complex chords. 
There are anomalous scales, with only the octave possible as a harmony. Four partials in the harmonic 
formant give quintal scales which admit also the fifth (and the fourth) as a harmonic interval; they are 
still rather poor for the modern musical thought. Tertial scales, with six partials in the first formant, 
introduce the third in harmony, which makes it rather good in most cases. The most interesting 
harmony can be achieved in harmonic scales, with more than six partials in the first formant. Only in 
such scales, harmony can freely use the seventh and the second. 

We refer to an interval that is generated inside the second formant as a melodic move, while an 
interval between a partial of the second formant and a partial of the first formant is called a melodic 
jump. Both moves and jumps define characteristic intervals of a mode, so we call the second formant 
modal. When harmonic intervals prevail, the scale is harmonically labile, so that any chord may play 
a centralizing role, and music cannot be tonally organized in a wider range. The opposite case, when 
modal intervals prevail, leads to modal lability, with weak tonal definiteness in a melodic sequence. In 
both cases, higher levels of musical hierarchy can hardly be built. This property is usually exploited to 
produce some coloristic or stylistic effects, but generally it restricts the practical use of the scale. The 
criterion of scale lability is introduced as 
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where H and M are the numbers of partials in the harmonic and modal formants respectively. Now, 
L < 0 indicates harmonic, L > 0 modal lability.  Well balanced timbres with 1<L  lead to stable 
scales, which can be universally used. The well-known example is the common 12-tone scale. Scales 
with lower number of zones cannot be stable. 

Higher partials usually concentrate in a vast chromatic formant which is responsible for the 
distinction of narrow intervals. The basic scale becomes thus more pronounced, quite like the higher 
vocalist’s formant makes vocal performance more articulate. Too long a chromatic formant may, 
however, lead to chromatic lability of the scale, that is, an easy drift from any musical structure by a 
narrow interval. On the other hand, if the maximum chromatic move is too short, then some modal 
moves will not have chromatic analogues. Also, for chromatic stability, the minimum chromatic move 
should be narrow enough, so that a chromatic alteration of a degree would not change its function. 
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Chromatically stable scales are those with ν = 10, 12, 17, 19, 22, 31. 

With a pre-selected optimal timbre, one can tune hearing to the structures different from the basic 
scale as defined by the dissonance function. Formally, this corresponds to dispersions ζ < ν and the 
timbre truncated to the number of partials Z < N. Such a reduction is not arbitrary; the possible 
embedded scales are determined by the Fourier spectrum of the dissonance function. Each scale has a 
number of possible subscales. An example of the hierarchy of possible embeddings is presented in 
Fig. 3.  

This hierarchy can be unfolded in different ways. In particular, the systems of embeddings 12 ⊃ 7 ⊃ 3 
and 12 ⊃ 7 ⊃ 5 can form. If an embedded scale is harmonically labile, it can play the role of harmony 
in the basic scale (as the imbedding ζZ = 36 in the ν = 12 scale).  A modally labile or stable embedded 
scale defines a possible mode or tonality (ζZ = 59, 710). Naturally, the reference tone of any embedding 
may differ from the key tone of the basic scale, which just specifies the pitch of a layer in a musical 
piece. 

 

 
Figure 3. Scale hierarchy for the 12-tone scale. 

The movable hierarchical system of embeddings represents the current musical context, defining 
dissonances and tensions on various levels. In general, a dissonance on a certain level occurs 
whenever an actually sounding tone does not fit into the current imbedded scale of that level. The 
tensions of a sound according to the imbedding with the discordance function ∆(h) can be estimated 
by the integral 
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For example, in the 12 ⊃ 7 ⊃ 3 system of embeddings, describing the usual tonal music, there exist 
harmonic dissonances (ζ = 3 level) and modal dissonances (ζ = 7 level), which can be resolved inside 
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the 12-tone scale. There are two ways of releasing the tension: a move to the nearest consonance, and 
a change of the current embedding system; both take place in real music. 

The 19-tone Scale 

The ν = 19 scale is a stable harmonic scale with 10 partials in the harmonic format and 5 partials in 
the modal formant; there is also a well balanced chromatic formant. The hierarchy of scale 
embeddings for the 19-tone system is displayed in Fig. 4. As one can see, the scale allows modelling 
the usual tonal music within the 19 ⊃ 7 ⊃ 3 system of embeddings. Additionally, there are 12-tone 
embeddings, a sort of hypermodes, or “hypertonalities” (Schönberg 1973). Some of them reproduce 
the usual ascending and descending chromatic scales; however, in  19-tone music, the tones of the 
hypermode are not evenly spaced, manifesting a specific structure of tensions. Also there are 
hypermodes that involve no diatonic, demanding a qualitatively different system of embeddings:  
19 ⊃ 12 ⊃ 5. Here the ζ = 5 level plays the role of harmony in the 12-tone hypermodes. Note that the 
59 imbedding in the 1931 scale is harmonically labile, though the pentatonic ζ = 5 is modally labile as 
an independent scale. 

 
Figure 4. Scale hierarchy in the 19-tone scale. 

The important feature of the 19-tone scale is that its fifth is narrower than the fifth of the traditional 
12-tone system (which is close to the natural fifth). For hearing tuned to the 12-tone scale, such a 
“tempered” fifth sounds rather unusual; it is softer and richer. In vocal intonation, it does not require a 
register shift and can be even reproduced by untrained people. In the context of 19-tone scale, this 
fifth is perceived as a full-fledged harmony, so that the traditional fifth avoidance is no longer 
necessary. 
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Playing 19-tone music requires specially designed instruments. Of course, one can tune a violin or a 
cello by the tempered fifths; however, the acoustic properties of the traditional instruments will hardly 
reveal in full the richness of new harmony. One could build a piano suited for 19-tone music adding 
one more row of keys (for example, painted in red), as shown in Fig. 5. Thus, instead of every black 
key, between the adjacent white keys there are now two intermediate degrees in case of a diatonic 
whole tone, while a diatonic semitone (B–C, E–F) is divided by a red key in half. With the equal 
temperament, all the intervals between the nearest keys are the same (1/19 of the tempered octave 
which should be a little stretched to the frequency ratio 219/ν ≈ 2.00447). The white and red keys 
separately form two diatonic 7-degree scales, while the black keys, as previously, assemble into a 
pentatonic. 

The notation of the 19-tone music extends the usual musical notation introducing the signs for half-
flat and half-sharp along with the usual flat and sharp. Such signs can already been found in the 
musical literature; but they traditionally refer to the half of the semitone in the 12-tone scale, while, in 
the 19-tone system, they have significance on their own, as the format structure of the corresponding 
optimal timbre predicts. A “whole tone” contains three steps of the scale; a “semitone” (the distance 
between mi and fa) contains two steps of the scale. Additionally, an “introductory semitone” 
corresponds to the interval of one step of the scale. Introductory intervals are widely used in music, 
though they are poorly reproduced on 12-tone tempered instruments. 

 

 
Figure 5. The 19-tone keyboard. 

For usual tonal music performed within the 19 ⊃ 7 ⊃ 3 system of embeddings, the full sharp and flat 
are mainly used in melodic alteration, while the half-sharp and half-flat are related to harmonic 
modulations. In particular, the traditional quintal circle will be constructed using half-sharp and half-
flat (which will correspondingly appear on the score as the key signs). 

For example, in Fig. 6 (upper), the ascending chromatic scale of C major is given in the 19-tone 
notation; it is obviously different from the descending major chromatic scale, as well as from the 
minor chromatic scales and the major-minor scale. 

 
Figure 6. Two hypermodes. 
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An example of a hypermode with 12 tones that cannot be reproduced in the 12-tone scale is given in 
Fig. 6 (lower). 

Conclusion 

L. Avdeev’s theory of pitch scales in music is capable of treating the scaling phenomena on any level 
of musical perception. In its static aspect, it describes all existing and possible in the future scales 
with regard to their musical value and expressive abilities. Also, it shows how ever more complex 
scales have been forming themselves with the growth in the number of partials comprehended in 
musical tones and the tightening of the perceptional tuning associated with the dispersion . The 
stages of scale development are embodied in the hierarchy of possible scale embeddings, which is 
linked to modal and harmonic levels of music. The model has been elaborated in the framework of a 
general theory of hierarchies (Ivanov 2009). 

Though the theory is based on the history of the European music, it can be applied, with minor 
changes, to musical systems that do not lean so much on scaling, such as oriental modes, ragas, or 
modern serial and aleatoric investigations. Any non-harmonic overtones can as easily be taken into 
account without complicating the mathematical formalism. We have thus presented a novel outlook at 
the acoustic foundations of music, ascending from the sensory level of the Helmholtzian physiological 
acoustics to the psychophysics of perception. Similar phenomena can be observed in the perception of 
the other aspects of music and in visual arts (Ivanov 1995). This makes hierarchical scaling one of the 
fundamental mechanism of aesthetic perception. 
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