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Sets vs. Boolean Algebra 

Classical propositional logic and set theory are often considered to be two instances of Boolean 
algebra, with set union corresponding to logical or, and set intersection corresponding to logical and. 
However, this does not reflect the logical structure of set theory. Thus, any set may be considered as the 
union of one-element sets, the sense of this representation depending on interpretation:  

• enumeration (strong union): a set is treated as element a and element b and element c and …; 
this makes a simultaneous interpretation of a set as actual integrity; 

• sampling (weak union): a set is treated as element a or element b or element c or …; this 
interpretation stresses the idea of potential integrity, referring to the operation of “probing” 
the set by random selection of one or another element. 

On the other hand, enumeration is algorithmic, in the sense that one is supposed to be able to construct 
the set being given its elements; on the contrary, the sampling technique refers to the quality of the set, 
the properties of the elements that make them belong to the set. Compare:  

• categorization by convention: let us refer to Mr. and Mrs. Jones as the Jones family; 
• explanation by example: the vegetables are… well… the carrot, the cucumber, the onions, and 

like.  
Similarly, the two types of definition:  

• by construction (explicit): numeric data types include integer, real, and date-time; 
• by function (implicit): let all the real numbers x < 0 be called negative. 

8 Jan 2000 

Negative Sets 

All fundamental mathematical objects are nothing but an abstract expression of the typical modes 
of activity. Thus, integer number originated from the procedure of counting and recounting, with the 
result that happened to never depend on the enumeration order. On the contrary, negative numbers 
express the idea of the impossibility of counting, of lack, or debt (so that the usual sign multiplication 
rule becomes related to the custom of debt compensation or paying off). Later on, when the overall idea 
is clear enough, one can get engaged in constructing formal models; thus number theory come to light, 
with its peculiar theorems. 

The idea of a set is an abstraction of inclusion, of the possible involvement of an object in some 
human activity. When we set about doing something, we first look at what could be useful for that, and 
what would impede it. All we see gets evaluated from this viewpoint. This is an entirely qualitative 
assessment: if it does for our purpose, we’ll keep it in the mind; if it won’t do, just drop it and don’t care 

1 

http://unism.pjwb.org/sci/mth/mthe.htm
http://unism.pjwb.net/sci/mth/mthe.htm
http://unism.narod.ru/sci/mth/mthe.htm


P. Ivanov Mathematical Notes 

any longer. Formally, we speak about an element belonging to a set, meaning our ability of constructive 
check. A set is exactly the entirety of what in contains, and it has nothing to do with the rest. In other 
words, it is only the property of belonging that is properly defined, while not belonging is something 
most uncertain (just because we cannot know everything in the world, including what is yet to come). 
However, when our activity is a part (a stage) of another activity assuming a wider range of objects to 
involve, the property of not belonging can be taken in a narrow sense, as belonging to a complement. 
This is a quite testable hypothesis. 

In general, rather complex hierarchical structures can emerge in this way; this reflects the diversity 
of human activity. Non-belonging is differently defined in different contexts. Still, in any case it refers 
to belonging to something else. Mathematicians prefer to deal with a constructively defined “universe” 
and never touch whatever lies beyond. This perfectly matches the natural circumstance that we always 
work with what we have, which is here at hand and is (at least in principle) available. 

However, in real life, besides the things that are fit for the current activity we often encounter 
things that are incompatible with it, or practically inaccessible. With that which is somehow present but 
cannot be used (is “forbidden”). Such objects are essentially related to the activity, they belong to it as 
well, but in a “negative” manner. These are not elements, but rather holes, the indicators of the necessity 
to exclude some things from consideration. 

The term has been borrowed from physics, where electrons and holes productively co-exist in 
atomic models, in semiconductors, and in many other practically important areas of research. In a way, 
a positron is nothing but a hole in the vacuum produced by the ejection of an electron; that is why 
electrons and positrons are always born in pairs. We find that the idea of a hole leads to a practically 
attractive mathematics in set theory. 

As we already know that the complement may play the role of subtraction for sets, we can 
formally define a negative set as the complement of a regular set to the empty set, as its subtraction from 
“zero”. The existence of such a complement can be simply postulated. We express it as AA \)( ∅=− . 
The minus sign has been put in parentheses to stress its operator nature. By definition, every element of 
the negative set is a hole in the position of a presumable element of the original set. Obviously, 

∅=−∪ AA )( . That is, considered together in the same activity, the element and the hole will 
“annihilate” each other, so that we have neither inclusion, nor exclusion. Symmetrically, 

AAA ))(()(\ −−=−∅= . In this way, we fix the logic of the theory; in some activities, this condition 
may not necessarily hold. 

Observing that sets are not linearly ordered like numbers, we can extend the study of regular and 
negative sets to the general case of arbitrary collections of elements and holes; for simplicity, we keep 
calling them sets (or classes, if you wish). Clearly, a general set can be decomposed into the “positive” 
and “negative” parts: 

np )( AAA −∪= , 

where Ap and An are regular sets (just elements, without holes). In particular, they may be empty. In a 
union of two sets, the corresponding elements and holes annihilate: 

np ))(()( BABABA ∪−∪∪=∪ , 

with 

)(\)(\)( nppnppp ABBBAABA ∩∪∩=∪  

n n n p n n p( ) \ ( ) \ ( )A B A A B B B A∪ = ∩ ∪ ∩  

A less trivial mathematics comes in as we pass from addition to multiplication, from the union to the 
intersection of sets. Here, formal evaluation requires the introduction of the common sign multiplication 
law: )())(( +→++ , )())(( +→−− , )())(( −→−+ , )())(( −→+− . The double negation has already been 
mentioned; basically, it can be translated as “the absence of absence is presence”. In the same manner, 
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we understand both the presence of absence and the absence of presence as absence. Once again, this is 
not always so in real life, but it will do in many importance cases. Then, obviously, 

))())((())()(())(())(( nppnnnppnpnp BABABABABBAABA ∩∪∩−∪∩∪∩=−∪∩−∪=∩  

Thus, one could construct a special case of an “antiset” of an arbitrary set: 

pnnp )())()((\)( AAAAAA −∪=−∪−=∅=−  

From the quantitative viewpoint, regular sets are characterized by the number of elements, 
assuming that each element contributes +1 to the total. Negative sets obviously imply the number of 
holes, each contributing –1 to the number of elements, so that the potency of a negative set is negative. 
For a general set, one needs to sum the positive and negative contributions, and any combination is 
possible. 

In applications, holes may become a promising formalization of the notion of need, which is 
practically important in sciences like psychology or economy. On the other hand, noting that particle 
annihilation in physics leads to the production of new particles, some quite nontrivial theories of activity 
could be developed. By the way, the notion of element is one of the most elusive in the present set 
theories; one can hardly tell it from a set. Traditionally, mathematicians tend to identify elements with 
sets thus limiting themselves to narrow range of the possible theories. One could observe that any object 
as an element is nothing but the class of all the sets containing it; conversely, as a hole, any object is 
associated with a class of sets it does not belong to. 

Any mathematician will readily indicate the algebraic structures covering the above, and proceed 
to the far-fetched conclusions. Here, we are not interested in the formal details; we rather seek for an 
intuitively pleasing notion of qualitatively distinct mathematical object. Such fundamental objects 
cannot be reduced to each other, even resembling each other so much. Thus, one could derive 
mathematical logic from set theory, or vice versa; the both will keep their special ways. Real numbers 
modelled with convergent sequences of rational numbers will remain real; even if we identify them as 
the elements of a field, this will result in yet another (general algebraic) model, abstracted from any 
other (possibly as important) aspects. Real numbers do not come from math; they come from praxis. 
Just like integers, or complex numbers, or geometric shapes, or sets. 

Now, we get negative sets. Proceeding in this direction, one can construct complex sets, or spaces 
of an arbitrary dimension… Let it be postponed to a better time. 

Dec 1984 

Fuzzy Sets and Relativistic Velocity Addition 

The axiomatic skeleton for fuzzy set intersections i(a, b) and unions u(a, b) is given by: 
1. boundary conditions: 

i(1, 1) = 1 
i(0, 1) = i(1, 0) = i(0, 0) = 0 
u(1, 1) = u(0, 1) = u(1, 0) = 1 
u(0, 0) = 0 

2. commutativity:  
i(a, b) = i(b, a) 
u(a, b) = u(b, a) 

3. monotonicity: 
if a ≤ a' and b ≤ b' then  i(a, b) ≤ i(a', b') and u(a, b) ≤ u(a', b') 

4. associativity:  
i(i(a, b), c) = i(a, i(b, c)) 
u(u(a, b), c) = u(a, u(b, c)) 
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In general, fuzzy set unions and intersections are not idempotent. Every possible choice of the 
form of fuzzy union, intersection and complement would violate at least some properties of the Boolean 
lattice. In particular, the law of excluded middle and the law of contradiction may not hold. 

As it is well known, the conditions 1–4 lead to inequalities  
i(a, b) ≤ min(a, b) 
max(a, b) ≤ u(a, b) , 

so that i(a, b) < u(a, b) for a ≠ b. The most common form of fuzzy set complement is c(a) = 1 − a . 
One could easily construct an example illustrating that the axioms 1–4 may be incompatible with 

DeMorgan’s laws: 
u(a, b) = c(i(c(a), c(b))) 
i(a, b) = c(u(c(a), c(b))) 

Indeed, let us assign to every element xi of a fuzzy set i ii
A xµ=∑  a number χi ∈ (−∞,+∞) such that 

( ))th(12
1

ii χµ += . 

With χ varying from −∞ to +∞, µ monotonically increases from 0 to 1. Let the complement of A be 
constructed according to the usual rule: 

( ) ( ) )()th(1)th(1)(1))(( 2
1

2
1 χµχχχµχµ −=−+=−=−=c . 

Finally, let us define the intersection of two fuzzy sets as 

( ) )21()th(1)())(),(( 212121212
1

212211 µµµµµµχχχχµχµχµ +−−=++=+=i . 

This expression satisfies the boundary conditions for fuzzy set intersection; it is evidently commutative 
and monotonic. Direct computation shows that it is also associative: 

)1(
))(),((),(())()),(),(((

323121321

321
332211332211 µµµµµµµµµ

µµµ
χµχµχµχµχµχµ

+++−−−
== iiii  

Thus defined i(µ1, µ2) is however not idempotent, though it is asymptotically idempotent at χ → ±∞, 
which ensures a correct transition to ordinary (crisp) sets. 

Now, let us use DeMorgan’s law to introduce set union through intersection and the complement: 
=−−== )))(),((())))(()),(((())(),(( 221122112211 χµχµχµχµχµχµ icccicu  

))(),(()())(( 22112121 χµχµχχµχχµ ic =+=−−=  

Since thus defined union and intersection coincide, set union will not satisfy the axiomatic skeleton, 
violating the boundary conditions at µ1 = 0 and µ2 = 1. And, of course, the value of i(µ1, µ2) can never 
be less than u(µ1, µ2) as it should be from the skeleton axioms. It should be noted, that the law of 
excluded middle and the law of contradiction are not satisfied for this choice of intersection/union: 

2
1))(),(( =−χµχµi  

The physical sense of the above definitions is relativistic addition of velocities. The particles 
moving forward with the speed of light are associated with µ = 1, while those moving with the speed of 
light in the opposite direction are associated with µ = 0. Note that the definition of union based on the 
addition of only positive velocities 

)th()( 21 χχχµ +=  

)1()()th()())(),(( 212121212211 µµµµχχχχµχµχµ ++=+=+=u  

is known as a function of the Hamacher class with γ = 2, and, together with the standard complement, it 
produces the intersection 

))1)(1(1(),( 212121 µµµµµµ −−+=i , 
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so that both the axiomatic skeleton and DeMorgan’s laws are satisfied. However, in this case, the 
definition of the complement is “physically incompatible” with the definition of the union, since 
Galilean velocity addition principle is mixed with the relativistic rule. 

14 May 1997 

 

Logical Symmetries and Complex-Valued Logic 

Traditionally, the algebraic formulations of logic would represent the logical value true with the 
number 1, and the logical value false with the number 0. Then the operations of conjunction (∧) and 
disjunction (∨) get naturally represented by algebraic multiplication and addition respectively. The rules 
of thus defined algebra significantly differ from common arithmetic; still, operating with numbers rather 
than special logical values makes certain aspects of logical theory more transparent, allowing for many 
productive generalizations. 

There is a different approach that might sometimes come handy in logical development. Instead 
of representing the logical value false with 0, one could rather represent it with the number –1. Denoting 
the logical negation with the minus sign, we can naturally obtain –1 (false) as not true,  while –(–1) 
equals 1 by definition: 

aa =−− )( , 

with the letters like a, b, c, … denoting, by convention, anything evaluating to a logical value: a constant, 
a variable, or a logical expression (formula) containing constants, variables and other expressions in any 
combination; further, one can consider logical-valued functions as abbreviations for some kinds of 
expressions and move on to variable functions and functional formulas; for our algebraic consideration 
this hierarchy is not really important.  

Now, let us introduce algebraic multiplication * so that 1 * 1 = 1 and (–1) * (–1) = 1, with the 
natural choice of (–1) * 1 = 1 * (–1) = –1. This operation obviously corresponds to logical equivalence, 
and it is idempotent, commutative and associative: 

abba ** =  
)*(**)*( cbacba =  

but, unlike conjunction and disjunction, it is not idempotent: 
aaa ≠*  

which does not seem to make much trouble, since the common numeric multiplication is not idempotent 
either. One can also observe that 

)(**)()*( bababa −=−=− , 

which pleasingly complies with our the arithmetic habits.  
Thus introduced multiplication is symmetrical in respect to truth valuation: swapping the truth 

values 1 ↔  (–1) will produce the same valuation table for logical equivalence. 
It should be stressed that the equality sign in the above expressions, albeit a kind of equivalence 

too, belongs to the logic of our description (methodological level) rather than to the logical structures to 
describe. The two levels may differ in their algebraic structure, including the very specification of the 
logical values. We may use equality and inequality to compare the formulas of the logic in question, but 
not within any logical formula. 

Using the above equations, we can formally eliminate negation from our theory replacing it with 
multiplication: 

aa *)1(−=− . 

This opens a promising direction of thought, since logical negation is a very specific operation that has 
historically raised much controversy. It is not quite obvious why we should stick to it in multi-valued or 
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fuzzy logics; all we can refer to is a long-lived tradition. However, as one can see, negation is not entirely 
eliminated in this approach, since we have to prefer one logical value to another; this is just another way 
to say the same. Alternatively, one could treat non-equivalence as an independent binary operation: 

)*( baba −=× , 

which implies the introduction of the “complementary negation”: 
aa *)1(~ =  

and thus a completely balanced theory with no unary operations. The applications of such a logic are to 
stress the practical polarity of the activities establishing equivalence and those that seek for distinction, 
with a wide range of intermediate modes. 

Obviously, the truth-values of this symmetrized logic are expressed through the two basic 
operations: 

aa *1=  
aa×=−1  

for any a. However, since this definition implicitly introduces a quantor, it belongs to a higher level of 
hierarchy, and we cannot employ the two logical values in our algebraic logic unless we do it in a 
symmetrical manner, like in the example of complementary negations. In other words, the space of truth-
values is thus understood as global in respect to the object area: there may be many logical values, but 
each of them would represent a statement about the whole of it. Still, when we mean some particular 
statements about the object area, we can expand the two constants as above, thus restricting ourselves 
to the common two-valued logic. 

A fully symmetrical logic could be enriched by the introduction of asymmetric operations that 
make difference between falsity and truth, so that their valuation tables would no longer be the same 
after replacing falsity with truth, and vice versa. The two common examples are provided by conjunction 
and disjunction, which are interrelated through either equivalence or negation: 

))()(( baba −∨−−=∧  

))()(( baba −∧−−=∨  

One could treat these dual operations as “additive”, compared to the multiplicative nature of equivalence 
and non-equivalence. In a logic without negation, they become independent, just like equivalence and 
non-equivalence. Still, in the binary case (that is, with implicit negation), we can symmetrically rewrite 
them as 

))*)(()*)(((*))*()*(( bbbaaabbaaba ×∨××=∧  
))*)(()*)(((*))*()*(( bbbaaabbaaba ×∧××=∨  

or in any other similar form. Additive (asymmetric) operations might be considered as more 
fundamental, compared to equivalence and non-equivalence, since one could construct symmetrical 
combinations of asymmetric operations, but not the other way round: 

))()(()(* bababa ¬∧¬∨∧=  

))()(()( bababa ¬∨¬∧∨=×  

Hence, the formalism of binary logic can be constructed from just two operations: logical negation and 
some asymmetric (“additive”) operation. However, this simplicity is delusive, as it is entirely based on 
the idea of logical negation, to compensate one asymmetry with another. In some cases, this original 
constraint may get too restrictive. 

Seeking for generalizations, let us recollect Peano’s Arithmetices Principia. Leaving aside the 
artificiality of his set-theoretic formulations, we stress, that natural numbers start with postulating the 
existence of a unit, so that all the other natural numbers could be expressed in terms of this primary 
quantity. Modern mathematicians are inclined to treat the pseudo-number 0 as a natural number, which 
breaks the theory’s transparence and consistency. Yet another important issue concerns Peano’s 
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introduction of numerical equality; later authors have identified it with logical equivalence, which is 
certainly inconsistent, confusing quite different levels of hierarchy just because they apparently 
“isomorphic”. Natural arithmetic could then be derived from the unity, equality, and a single unary 
operation, increment (which, in general, is not the same as binary addition of a natural number and 
unity). However, this inductive construct did not immediately reveal the inner symmetries of the theory, 
and the definitions of addition and multiplication were introduced, which then lead to the notions of 
subtraction and division alien to the natural domain. Subtraction lead to the idea of negative numbers 
and positioned zero as an integer. Division produced rational arithmetic as a basis of real numbers. The 
same development is also possible in logic. However, here, we are interested in yet another extension, 
complex-valued logic. 

We recall that the space of logical values in the binary limit is structured so that (–1) * (–1) = 1. 
Now, let us similarly introduce a logical value that would represent the square root of logical falsity: 
i * i = –1. Well, we do not yet know what it really is and how it can be produced, but we can simply 
postulate its existence and denote it with the character i. The possibility of such abstract 
conceptualizations has once become the cornerstone of all the modern mathematics. However, in our 
algebraic logic this imaginary unit value has a quite straightforward interpretation. Indeed, the equality 
a * a = 1 means that every real logical entity is equivalent to itself, that is, a ≡ a is true (where we mean 
the object area equivalence rather than the logic of its description). The equality i * i = –1 will hence 
introduce an entity that is not identical to itself. However strange this may sound for a scientifically 
minded person, the idea is not entirely new; it has long since been speculated upon in philosophy 
(especially in Hegel’s system and in Marxism). That is, our algebraic formulation of the classical logic 
might become a good starting point for the reconciliation of the scientific and philosophical ways of 
thought provided complex truth-values are taken into account. 

In this extended logic, every truth-value may contain both a real and imaginary component. 
Depending on the choice of the “additive” operations, one will obtain different rules for arithmetic 
manipulations with complex truth-values. In general, these rules will be much more complicated than 
in conventional complex arithmetic. This does not deny the correspondence in principle. For instance, 
the traditional interpretation of phase as vector rotation angle immediately applies to logical negation 
interpreted as vector inversion. This also leads to the distinction of inversion and mirror reflection, 
revealing some fine details of logicality. 

The presence of the “phase” component in any logical value opens new perspectives for quantum 
logic, since the “observable” reasoning is restricted to real numbers, hiding the inner phase-dependent 
derivations. The introduction of such hidden logical states is similar to the transition from the observable 
position and momentum of a classical particle to the virtual motion in the inner configuration space of 
a quantum system that do not directly correspond to any observable quantities. 

To conclude, the symmetric form of algebraic logic is promising enough to suggest a closer look 
to its generalized versions, including many-valued, rational, fuzzy and complex logic. It becomes 
especially appealing as, on the one hand, the kind of mathematics thus obtained does not demand a 
revolutionary shift of paradigm, and on the other hand, the new notions remain quite intuitive and 
tractable even for those who do not praise much the excess of formal sophistry. The hierarchy of logic 
has yet much room for nontrivial development. 

Nov 2003 

Points and Limits 

Traditionally, the typical procedure of constructing a metric space S looks like that: let us take a 
set B (which will be called a base in the following; her, we don’t discuss topology, and there should 
hardly ever be any confusion), and let us know how, for any two points x and y from B, to find a (real) 
number ρ, to be called the distance between x and y, provided the following conditions are satisfied: 
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(1) ρ(x, y) = 0 if, and only if x = y 
(2) ρ(x, y) = ρ(y, x) 
(3) ρ(x, y) ≤ ρ(x, z) + ρ(x, z) 

In the above, the same quantifier “for any” is implicitly meant (and we do not yet ponder much over its 
sense and feasibility). The second axiom, to be true, just says that metrics is a function of a subset rather 
than an ordered pair, as the order of elements does not matter. This makes one think that thus defined 
distance is basically a kind of measure: it hides the size of what lies between the end points (the length 
or duration to walk). This too requires a separate treatment. The last property is commonly known as 
the triangle inequality; it is here, where most alternative theories of distance introduce their specific 
deviations (for instance, like in ultrametric spaces). 

The formal mathematics holds that one is free to define anything in any way. Nobody cares for 
the reason. In reality, of course, definitions are never spun out of thin air: they are intentionally designed 
to produce what we need in the end. Since this ultimate goal grows from the common practice, arbitrary 
solutions are very unlikely to encounter. A layperson, however, may miss the inner sense of what is 
going on, and this makes it hard to get through the rest of the science, however logically derived from 
the primary notions. Typically, mathematicians are not inclined to put things plain; even worse, they try 
hard to disguise the practical motivation. Here, we’ll look closer to what is usually left in the shade. 

On the next stage of metric theorization, one comes to studying sequences of points from B, which 
are formally defines as some mappings of the natural numbers into the base. However, in fact, we need 
an algorithm that would allow us to choose one point of the base after another; it is this practical principle 
(along with a starting point) that defines the resulting sequence. Devoid of this systemic directedness, 
the collection of points is not really a sequence, but rather a mere set. One could easily observe that the 
very construction of the natural numbers is exactly like that: as soon as you reach a certain mark, go on 
to the next. The common arithmetic operations are introduced later on, formally imposed as an optional 
structure due to one of the possible ways of identifying different sequences. Well, let the topic wait for 
a better season. 

So far, we are left with the succession of base points, which is traditionally denoted using the 
subscript notation: xn , with n = 1, 2, … (sometimes, starting from zero, or from an arbitrary positive 
number). Sequences may be of any sort, and the same points may be counted many times. In the trivial 
case, the whole sequence will contain a single point of the base, stubbornly reproduced at each sampling. 
In general, a sequence may exhibit multiple self-intersections, numerous loops. The important special 
case of this generalization is provided by periodic sequences (closed orbits). Eventually, sequences may 
(appear to) be random; this is yet another reason to avoid considering sequences as instantly given 
entities, to honestly compute them once needed, without any pretense to get the same result the next 
time. 

Since we are interested in distances, we immediately discover two complementary modes of 
transforming sequences of base points (which may be complex and poorly tractable, or even not 
mathematical at all) into sequences of numbers (which seem to be much more familiar). First, we can 
compute the distances between the elements of the sequence: ρin(n; m) = ρ(xn+m, xn) . Alternatively, one 
could fix a point in the base and determine the distances of all the elements of the sequence to this 
reference point: ρout(n) = ρ(xn, x0) . The notation is to stress the different character of these quantities: 
either inner or outer structure. The former is well known from mathematical statistics, as a variety of 
autocorrelation. The complete collection of such functions (with all possible m) may be considered as a 
fait account of the inner organization of the sequence, regardless of its embedding in the incident space. 
The latter construct puts us in the framework of vector analysis, so that any point of the base could be 
represented by its radius vector; with a few reference points to start with (the required number depending 
on the nature of the base and the way of its arithmetization), we can specify the direction as well. When 
such multiple reference points form an independent sequence, we come to a “synthesis” of the inner and 
outer structures, sequence comparison: ρy,x(n; m) = ρ(yn+m, xn), or, conversely: ρx,y(n; m) = ρ(xn+m, yn). 
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The outer structure, in general, does not follow from the inner structure, and the other way round. 
This depends on both the organization of the base and the definition of the distance. Still, in many 
practical cases, the two structures seem to lead to basically the same view. 

One of the most important ideas related to such correspondence is provided by the notion of 
convergence. Thus, if, for any positive real number ε, there is a natural number N, such that ρin(N; m) ≤ ε 
for all n ≥ N at some fixed m (usually set to unity), the sequence xn is called a Cauchy sequence. 
Alternatively, if, for any ε, there is some N, such that ρout(n) ≤ ε for all n ≥ N, we say that the sequence 
of points xn converges to the point x0 , or, equivalently, that the point x0 is the limit of the sequence, 
which is commonly written as xn → x0 . Convergence of the points of the base thus gets reduced to 
convergence of real numbers abstracted from their object area. This may lead to spurious effects, as the 
properties of numeric sequences do not exactly correspond to the properties of the objects of interest, 
and an imprudent judgement neglecting the essential features of the object area may lead to logical 
fallacies. 

In metric spaces, the triangle rule makes every converging sequence a Cauchy sequence as well. 
The converse is not true, as there may be no point of the base infinitely close to the sequence points. On 
the other hand, the same triangle rule implies that, with xn → x0 and yn → x0 , also  ρy,x → 0. One is 
tempted to believe the converse to be true: if ρy,x → 0 then xn and yn either simultaneously fail to 
converge or converge to the same base point. If this were so, one could boldly consider all the sequences 
with ρy,x → 0 as equivalent, so that the base could be completed by such equivalence classes taken for 
the lacking limit points. In elementary mathematics, we simply observe that, if the distance between the 
limit points of equivalent sequences is non-zero, it is enough to choose ε equal to the half of that distance 
to make the three convergence conditions (for xn , yn, and ρy,x) violate the triangle rule; consequently, 
the distance between the limit points must be zero, and then by the first rule of metrics, the limit point 
will coincide, which seems to be the desired result. 

I dare to make a boring suggestion: let us pierce the inviolable wall of mathematical rigor and 
look out through the tiny hole into the open of not so elementary world. Logically, the definition of the 
limit only says that the distance between the limit point and the elements of the sequence can be made 
smaller than any fixed real number. But this is not an identity, unless we deal with the same point 
infinitely repeated. Similarly, the parallel convergence to two different point means that the distance 
between these limits can be made smaller than any number, and not that the distance is zero. In other 
words, the distance between the limit points of two equivalent sequences is the limit of a numeric 
sequence rather than a ready-made real number. It tends to zero, but does not equal zero. In the early 
days of mathematical analysis, its founding fathers spoke of infinitely small quantities, never identifying 
them with real numbers. Later, the static paradigm has expelled the notion of an infinitely small value 
from any school courses; in the XX century, the term has been revived in the context of nonstandard 
analysis (which, however, merely tried to tame the essentially dynamic idea reformulating it in the same 
static language). Now, the distance between the elements of converging sequences is infinitely small, 
but it is not zero. Logically, we cannot apply the first rule of metrics to such quantities, except for a few 
special cases (say, the isolated points of the base). 

For the same reasons, the triangle rule does not apply to the convergence process, being initially 
coined for finite (static) quantities. A similar rule concerning infinitesimal values would look differently: 
ρ(x, y) is an infinitesimal of the same or higher order compared to ρ(x, z) + ρ(x, z). 

Let’s dig a little bit deeper. When we compare two sequences, we leave the initial metric space S 
to arrive at a different space, with the base composed of Cauchy sequences on S. The equivalence of 
sequences is defined in respect to that new space. So, the zero distance as the measure of the difference 
of sequences is not the same as the zero distance between the elements of the initial base, and we have 
no right to compare xn , yn, and ρy,x within the same triangle rule! This is a logical fallacy, term 
substitution. We have not accounted for the fact that the same number (name) may label qualitatively 

9 



P. Ivanov Mathematical Notes 

different entities. Distances in the space of sequences may be computable on the basis of distances 
between their elements; still, these are different notions of distance, whether their numerical values 
coincide or not. 

To identify a class of equivalent Cauchy sequences in the space S with a point of its base B, one 
needs a special operation, which does not need to be always feasible, and which may be equivocal. For 
instance, consider a random identification with the points of some area in B, as described by a probability 
distribution. It is only in a very special case, when the distribution is represented with the δ-function 
(which, as we know, is not entirely a function but rather a functional), that the projection would give a 
kind of a point. In the same lines, if a Cauchy sequence does not converge to a base point, we cannot 
formally complete the base adding a new point, since such additional points may be logically 
incompatible with the object area of the theory and need a different theory, with a different base.  

And finally, for advanced dummies. The collection of sequences converging to some base point 
x could be treated as its infinitesimal neighborhood. Each point therefore becomes a center of the cloud 
of infinitely small deviation from that point, its virtual variations. For every positive real number r, the 
number of elements in any sequences converging to x that remain outside the ball of the radius r is finite. 
Provided, in a meaningful theory, the sequences are constructed according to the same generic principle, 
one could estimate the average number of points –ε(r) outside the r-sphere; the sign has been chosen 
to reflect the fact that any sequence is only “shortened” at any level r. Those acquainted with 
nonstandard analysis may invoke a kind of ultrafilter. The quantity ε(r) serves as a measure of 
connectedness of the point x to the base B, resembling the binding energies of electrons in an atom or 
ion. This “energy” is negative due to a special choice of the reference level: we count from the threshold 
of detaching the element from the set (the analog of the ionization potential in atomic physics). 
Depending on the structure of the base (the object area of the theory), one will obtain different 
distributions of such binding energies. Thus, in atoms, we often observe series of discrete levels 
converging to the ionization threshold. 

This can readily serve as a basis of the possible generalizations of the notion of an element’s 
belonging to a set. Normally, an element either belongs to a set or not. Fuzzy set theories admit 
incomplete (partial) belonging; multiple belonging is an obvious extension. However, there are no 
indications of the origin and possible forms of the membership functions. Here, we relate membership 
(the way the element is linked to the set) to the structure of the object area selecting the possible 
trajectories. Every membership function then becomes a property of the infinitesimal neighborhood of 
a point and it can be numerically evaluated as an average of some operator acting in this inner space. 

That’s the point. Any superstructures of the base set produce a higher-level entity. In the same 
time, their presence means the development of an inner structure within a base point, its inner space. 
Thus mathematical object become hierarchies. 

It is understood that converging sequences are not the only option available. One can consider 
any trajectories approaching the limit point, including continuous curves (like all kinds of spirals). 
Alternatively, one could speak of randomly selected approximations. Additionally, there are various 
non-explicit definitions (like set intersections). One could even associate points with algorithms or 
physical processes, with their specific symmetries (“spinor” components). The inner space of a point 
can be extremely complex, while the base retains a simple metric structure, and its points still coincide 
for zero distances. With all that, infinitely small distances do not imply anything until we indicate the 
level of discrimination, unfolding the hierarchy in a specific manner. The transition from the inner 
dynamics of each point to the bas-level properties requires a definite projection procedure (just like 
quantum mechanics represents the observables with operators). 

We encounter inner spaces every time we are to decide on equality (equivalence) of one thing to 
another. Quantitatively, this means that some measure of difference tends to zero. In a rough overall 
comparison, the complexity of the objects to compare is not apparent. Still, as soon as we eliminate 
distinctions at some level, we need to deal with finer variations, penetrate the “inside” of zero. One does 
not even need quantum mechanics: it is enough to recall that the Solar system, with all its planetary 
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richness, looks like a single point for the inhabitants of the nearest stars, nothing to say about distant 
galaxies. 

For a purely mathematical illustration, take the equality of complex numbers. Formally, two 
complex numbers are equal when the distance between them (the absolute value of the difference) is 
zero. However, if a complex number is specified by the absolute value and phase, the points {0, φ1} and 
{0, φ2} are far from being the same. That is, zero distance does not mean perfect coincidence, as we 
need to approach zero by similar trajectories to ensure the equality of phases. Traditionally, nobody 
cares for such nuances, and the phase of complex zero is said to be undefined. In other words, the 
distance in complex plane is defined up to a phase factor, or, alternatively, as a phase average, so that, 
to be explicit, we have to explain how we compute that average and why. 

School mathematics takes the linear algebraic form of the complex number with component-wise 
equality for primary. In this picture, zero is a single point, like any other. Similarly, a single infinite 
point is introduced (in projective geometry); however, in real calculations, we have to specify the way 
we pass these singularities. It is never possible to think of zero and infinity as ordinary numbers; this 
inclusion is purely conventional. They are not entirely numbers, as they do not exactly behave like 
numbers. 

There is an obvious parallel with vector spaces: a vector as a directed quantity is not entirely the 
same as its coordinate representation. Where the zero vector is directed? 

Can we rationally explain why the linear scheme should be the origin of all? Just admit that 
rotation might be much more important in the real world than mere translation. Why not? The 
component-wise representation may be considered as a special case, just how a straight line is a special 
case of general curve, along which the inner space of each point gets mapped onto the inner space of the 
next. The standard theory of metric spaces remains true, but only in the zero approximation. 

Aug 1988 

Hierarchical Dimension 

Since mathematics has forcefully abstracted itself from our everyday experience and restricted 
itself to entirely formal issues, we can no longer comprehend what it really is, space. Almost anything 
can be referred to as space nowadays. Finally, mathematicians just abandoned this notion and stack to 
highly formal constructions with the names containing the word “space” by mere tradition, mainly in 
the meaning of "manifold". For such abstract objects, a few as abstract definitions of dimension have 
been introduced, which tell nothing to the heart of a regular person. We are to blindly believe in the 
stories suggested by the big science, and to be content with following their recipes, pushing the keys in 
a prescribed order nobody knows why and for which reasons. Given that modern physicists tend to 
meditate over their formulas rather than take notice of nature, one does not expect any clarifications 
from that party neither. And, of course, there is no use appealing to science-blinded philosophy for 
elementary coherence. 

Still, there are those who have retained a bit of human curiosity and who sometimes want 
something palpable, tractable with a kind of intuition about the real thing around us (and the real people 
dealing with such things) rather than mere combinations of ideograms. Our practical notion of space 
refers to real world. Yes, life is complex and diverse, and one needs to differently arrange for certain 
effects; this leads to the thought of numerous spaces, each organized to support some specific activity. 
In certain cases, such spaces will basically differ by a (quantitative) parameter that we associate with 
the notion of dimension. However, it is a true notion that we need, that is, a variety of common 
techniques of constructing spaces of any dimension; don’t feed us mere symbolic manipulation. 

Let us try to (at least schematically) outline one of the possible solutions. Admitting that any 
choice requires a lengthy justification, let us, however, start with preliminary hints to the very things to 
be justified. 
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In respect to human activity, the idea of space characterizes the available options, the ability of 
choice. This is how any “spatial” language is used in the everyday life, and life in science does not add 
any principal difference. So far, the examples from science are more common, as modern philosophy 
does not accept other authorities. Well, let it be science, with a distant aim of eventually adjusting thus 
acquired practical experience of space construction to all spheres and levels of activity. Now, let us 
gradually accumulate the necessary instrumentation. 

To make the discussion meaningful, we declare that space does really exist, that it is not a personal 
freak or sheer fantasy. The world is made that way. And this is how we act in this world. With all that, 
the existence of space is not of the same kind as the existence of any material things. Space does not 
exist on itself, without anything at all; space is primarily a relation between things. In philosophy, such 
matter-dependent existence is called ideal. Conversely, things do not exist regardless of their 
interrelations, so that any matter assumes some ideality (and this not necessarily space). Under certain 
conditions, the ideal entities get represented by material things. The word “space” is a mere sound, or 
pigment on paper, or a bright dot on the screen; as soon as we start practically dealing with space 
(including theoretical discussions), this things (the word) becomes a conventional designation for space 
within the current activity or the current topic. Space is objective; still, in every particular case, we 
approach the idea from one of the possible directions. Any features we discover may refer either to space 
as it is (its “inner organization” that does not depend on our subjective moods), or to some specific 
implementation of space in our activity (“realization”). It should be stressed that, in addition to the 
distinction of the notions of different types (levels), each individual notion develops a layered structure 
of its own. In this context, we distinguish the natural (“geometrical”) dimension of space and its outer 
(“topological”) dimension. 

0. Point 
To be honest, this is not an appropriate idea to start with. Rather, that is what we reach in the 

conclusion: the summit, the highest degree of abstraction. Still, since this text merely presents something 
earlier thought up and over, one can afford beginning with the end. 

For a constructive theory of dimensionality, a point is the nothing we use to produce anything at 
all: the vacuum, “zero-dimensional” space, that is, the absence of spatiality as such. The utter 
impossibility of motion nor action. 

As we accept the objectivity of space, a point is the expression of this objectivity. Space contains 
(or is built of) some points; this is nothing but the affirmation of existence and a specific quality. It is 
only in respect to its “embracing” space that a point can acquire any definiteness; the point just borrows 
(inherits) it from its space. That is, there are no points as such: all we have is different spaces that can, 
in certain contexts, be folded into a point, preserving the same spatial quality. 

1. Dimension 
In philosophy, there is a category which usually goes under the name of “measure” (not to confuse 

with the narrow mathematical notion of the same name). The category refers to the very possibility of 
comparing that to that, when one thing becomes a gauge for another, the unit of measurement. 
Obviously, what we measure must, in some respect, share the same quality with the chosen unit (that is, 
be commeasurable with the reference thing). On the other hand, it must differ from the unit, to allow 
any comparison at all; such distinctions are called quantitative. 

Unlike a point, any dimension implies the possibility of motion within certain limits (a “degree 
of freedom”). So, that is what we call a (one-dimensional) space. For a different choice of the unit, the 
spatial relations will be expressed by some other numbers (and maybe not numbers at all), which does 
not influence the objective nature of these relations; the (inner) directedness of the space is as objective, 
providing a sound basis for the very definition of a single dimension. 

Admit that there are several different measures (with the corresponding units of measurement). 
In this case we speak about a many-dimensional space. In the following we are to discuss the possible 
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interdependencies of the space’s dimensions. Here, we observe that, in general, the different dimensions 
of a space are qualitatively different, and one cannot just add one value to another. For instance 
(anticipating further discussion), to construct a many-dimensional metric space, one needs to somehow 
bring the different units to a common measure; in the form for the interval, 

2 i k
ikds g dx dx= , 

the coefficients g have (physical) dimension 
[unit of interval] / [unit i] / [unit k] 

Expressing all lengths, say, in meters, we keep in mind a practically available procedure of converting 
the primary units to the desirable result; in the language, the original units often have different names, 
such as “a running meter”, “width” (or “breadth”), “height”, and the lots of other names, depending on 
the kind of what we measure. Consequently, the integrative unit can only be meaningful in the context 
of an activity requiring that very dimensionality; thus, there is no use to convert all currencies to US 
dollars where dollars are never introduced in circulation. 

In every particular application (a specific activity), we represent a space of a positive integer 
dimension just listing its dimensions in a definite order. This order may be of practical importance, or 
may not be. This sequencing does not change the space itself, which implies the entire ensemble of the 
possible representations, without an absolutely preferable ordering. Still the collection of choices is in 
no way arbitrary; it is exactly the common basis for all the possible representations of the space that we 
call its (geometrical) dimension. In other words, dimension is understood as a hierarchy, producing 
multiple hierarchical structures (the positions of hierarchy). For example, one can observe that the 
Cartesian product of two spaces with (different) dimensions N1 and N2, is obviously non-commutative, 
though the overall dimension will equal N1 + N2 in any case. In this model, each many-dimensional 
space manifests itself as a variety of the decompositions of the total dimension into the sums of partial 
fragments, which can be graphically pictured as a number of tree-like structures (the possible 
unfoldings): 

 

 

, 

plus all the permutations in the sequence (a, b, c). In real life, some variants may be practically 
unfeasible. Thus, to get into an apartment in a city house, we need to first get in, and then make use of 
an elevator (or a staircase); the inverse order would require the art of climbing the walls. 

2. Constraint 
The notion of constraint is widely used in analytical mechanics. It can readily be associated with 

negative dimensions. Indeed, while an additional dimension adds a degree of freedom and increases the 
total dimensionality of the space, a constraint, conversely, blocks motion along a certain line (not 
necessarily straight) thus effectively diminishing the dimension of the problem. The simplest constraint 
must therefore be treated as a space of dimension –1. Any combination of constraints will produce a 
constraint of a higher rank, producing space of any negative dimension. 

The way of imposing a constraint depends on the space where it is to be defined and the choice 
of parametrization. In particular, when a space is represented by some coordinate system, a constraint 
can be expressed by an equation somehow combining the coordinates. However, like with the positive 
dimensions, constraints do not depend on such specific parametrizations. While a dimension conveys 
the idea of an objective relations between things, a constraint refers to some relation between such 
relations; this is, so to say, an ideality of a higher level. Still, in many practical cases, when we are 

a b c 
a b 

c 
c b 

a 
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primarily occupied with the fundamental contrast of the material and the ideal, rather than the detailed 
structure of ideality, the distinction between dimensions and constraints is formally irrelevant, and one 
is free to combine them in any order to produce all kinds of spaces. 

Obviously, the spaces of the same overall dimension can be structured in many ways, in 
accordance with the mode of adding dimensions and imposing constraints. Some combinations may be 
impossible to practically implement. In an abstract theory, assuming the formal acceptability of all such 
constructions, the total dimension of a space with constraints is a general characteristic of the possible 
unfoldings (positions) of hierarchy, hierarchical structures. For example, in atomic physics, a theory of 
the collective motion of and atomic electron and a hole will make a three-particle problem (accounting 
for the field of the atomic core); however, the atom is neutral as a whole, and its complex structure will 
only manifest itself at a closer contact. 

3. Projection 
Just like constraints, projections effectively diminish the dimension of a space, but they do it in a 

different manner. A projection relates an N-dimensional space to another space of the dimension Q (the 
component space), which can be treated as internal space contained in every point of the original space. 
The dimensions of such inner space are called projections; their dimensionality is evaluated as N / Q. In 
particular, the components of a one-dimensional space have the dimension of 1 / Q. 

This allows constructing spaces of any rational dimension. Imposing constraint on projections 
rather than the dimensions of the original space, we obtain spaces of negative rational dimension; a 
projection of an elementary constraint will then have the dimension of –1 / Q. One could readily observe 
the kinship of negative constraints to the common orthogonalization procedures; thus, projecting a 
“vector” onto the inner dimensions that are orthogonal to it, we get zero. 

A point of the original space can be reconstructed by a complete set of its projections. In the inner 
space, this means constructing a space of Q dimensions from individual inner dimensions. In terms of 
outer (“Cartesian”) products, we get the usual equality  

( )/ QN Q N=R R . 

Of course, one is to accurately account for the possible interdependencies, to establish a kind of 
“orthogonality”, which may only be locally reachable in nonlinear dynamics. This does not change 
anything in principle. 

Real numbers are commonly defined as classes of converging sequences of rational numbers, or 
the sections of the rational set. Following the same logic, sequences (hierarchical structures) of spaces 
of rational dimensionality will produce real dimensions. It is important that it is the geometrical (natural) 
dimension of the space that is real, and not an outer (topological) dimension. In general, no topology is 
implied by geometry, and geometry does not depend on topology. Some special theories may correlate 
the procedures of fractal construction to rational-dimensioned spaces, so that topological dimension 
could follow from geometry, with a kind of conceptual isomorphism. Still, let us stress once again, 
isomorphism is not equality. For instance, the point of the segment (0, 1) can be neatly mapped to the 
points of the segment (1, 2), with the entire structure preserved; this in no way means that x = x + 1. 

4. Index 
Indexing can be understood as the opposite of projection: instead of unfolding an inner space of 

every point, we attach some outer object to it, thus effectively increasing the overall dimension. This 
outer thing is used as the “name” of the point, its formal label that can change with the transition from 
one index system (frame of reference) to another. Such names can be of any nature at all, not necessarily 
from the mathematical domain. Take, for example physical fields or toponyms. In mathematics, 
however, indexed spaces are quite common as well. For instance, any coordinate system is of that very 
kind: we label a spatial point with a cortege of numbers reproducing the chosen sequence of the 
dimensions of the space. This is an elementary index space of the dimensionality 1, a “vector”. 
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Alternatively, in each point, we can construct a matrix (a tensor of the rank 2) rather than a vector. The 
components of the tensor we mark with two indexes, so that, if the substrate space has the dimension of 
N, the components of the tensor will form a space of the dimension N2. Obviously, indexing with k 
indexes corresponds to the power k of the dimension of the original (configuration) space. 

One might think that the power of a number could be naturally introduced as repeated 
multiplication: 

kN N N= ⋅…⋅  (k times). 

For the square of a space dimension, a similar approach would seemingly give 

( )2 NN N N N× ×…=R R R R  (N times), 

and one could fancy longer chains like that. The problem is that the dots in such expressions do not 
denote an elementary operation; in fact, this is a sort of “quantifier” which belongs to the next level of 
logic and hence cannot be defined in terms of the original object area. In fact, we thus mean some activity 
in the base space. This process may sometimes be programmed, to a certain extent. Much more often, 
an informal procedure is implied, which makes it an inexhaustible source of ever new mathematical 
structures. Noting that such repetition, in general, does not need to be limited to an integer count (since 
we are going to discuss spaces of any real dimension), the above “trivial” definition is utterly 
unsatisfactory; that is why we accept from the very beginning that exponentiation is an operation of a 
special kind that cannot, in general, be reduced to multiplication. Still, for a small integer number of 
indexes, some indexing systems allow establishing a correspondence (isomorphism) between the spaces 
produced in alternative ways, to preserve the “correspondence principle”. 

Dimensional indexing will naturally reproduce the usual properties of the power: 

1 1k = , 1N N= . 
Indeed, if each index may only take a single value, an object with any number of indexes will have a 
single component; when there is only one index, the number of components equals the dimension of the 
base space. 

Any index lists the dimensions of the base space in a definite order. As mentioned before, this 
corresponds to unfolding the hierarchy of the space into a specific position. The same hold when the 
space is being constructed with constraints and projections. The sequence of “constructors” plays the 
role of a spatial dimension in respect to the index set. Of course, such a space admits index constraints 
and inner dimensions of the indexes. That is, the number of indexes (and the components of the index 
space) is generally expressed by a real number. Thus an arbitrary real power of dimension is defined. 

The index space of the dimension 0 is readily associated with a scalar field, a numeric function 
on the base space. Obviously, any dimension in the zeroth power will give zero. For definiteness, let us 
accept that any power of a zero-dimensional space is to produce an index space with no components. 
Here, however, there are alternative possibilities: for instance, one might prefer construction of the 
molds for indexed objects, allowing a definite index structure, but without actual components in the 
possible positions; such an abstract object does not refer to anything and has nothing to do with the 
structure of the base space. This is quite like distinguishing complex numbers with zero (or infinite) 
modulus and a range of phase values (which in not a common choice in the present mathematical 
theories). 

The power (–1) of a dimension N is a constraint of rank N in the index space, which is equivalent 
to the space with the negative dimension (–N). In the tensor model, such a constraint could be associated 
with the lower (covariant) index, in contrast to the upper (contravariant) indexes for the positive 
dimension. Imposing this constraint is simply a convolution of the constraint with one of the upper 
indexes, so that the total number of indexes will be diminished by one, as one could intuitively expect. 
However, there are other types of constraint that cannot be directly related to a power of some base 
space. Thus, merely fixing the value of a single component (or a combination of the components) of a 
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power object, we get a constraint of the dimension –1 on the index space. In general, the values of 
multiple components get thus interrelated; in respect to the base space, such constraints become 
symmetries. They do not change the dimensionality of the problem, while significantly influencing 
dynamics (once again, mind the difference between the geometrical and topological dimension). When 
there are too many such constraints (above the dimension of the space), symmetries become constraints. 

The square of a constraint (a space with the dimension –1), by its sense, is a constraint imposed 
on a constraint. This effectively corresponds to unfreezing a degree of freedom. That is, for spatial 
dimensions, (–1)2 = 1. 

5. Branching 
Indexing (exponentiation of dimension) is a transition from one level of hierarchy to another level, 

where the objects are structured unlike the objects (points) of the base space. To produce a regular 
geometry, we need a special operation enumerating of the components. Of course, such an ordering can 
be differently achieved. In principle, this does not differ from the enumeration of the dimensions of the 
base space; however, the necessity of “lifting” the procedure of exponentiation in its result, the transition 
from many indexes to simple succession (a higher-order index), is always present in the background; 
this is not a formal trick, but rather a practical act related to the choice of the object area. Given the 
presence of constraints, such a transition could be compared to canonical transforms in analytical 
mechanics. 

In general, 
1/( )k kN N≠R R . 

Each instance of exponentiation (albeit to a fractional power) moves us to a higher level of hierarchy, 
which cannot be unambiguously reduced to a lower level, since there are different unfoldings of the 
hierarchy, and the same higher level object may result from different hierarchical structures. The parent 
structures of a power space could be called the branches (folia, replicas) of the base space. These are 
higher-level objects, which have different dimension but still somehow correspond to each other (up to 
isomorphism). For example, a two-index space of the dimension 1 can be obtained as a square of either 
a one-dimensional space, or an elementary constraint; two branches are thus defined, each representing 
a specific position of the hierarchy of the index space. For index spaces of a more developed structure, 
the number of branches may increase, and even be infinite. 

The branches of an elementary constraint on the index space of the rank 2 (that is, the restrictions 
on the components of a square matrix) are of a particular interest for the mathematics of dimensionality. 
Such a constraint has geometrical dimension –1, while the search for the branches means taking a square 
root. In this way, we come to the notion of imaginary dimension  (+i) and imaginary constraint (–i), 
which can be further expanded into a theory of spaces of any complex dimension, in the simplest case, 
representable by the product of the real and imaginary parts. 

Quantum Set Theory 

The fundamental notions of the classical set theory are never formal: a set, an element, 
membership and absence, equality and difference… Depending on the conventional usage rules, 
different classical theories may emerge; in any case, the formal axiomatic carcass cannot be treated as a 
definition, but rather should be taken for a “constraint” (in the sense of theoretical physics) narrowing 
the range of the relevant constructs, while never eliminating terminological ambiguity. When it comes 
to drawing analogies from physics, we have to operate within a specific interpretation; this is a regular 
situation in any science and it does not pose any serious problems as long as no abstraction is deemed 
to be absolutely preferable and the natural scope of a particular science is always kept in the mind and 
respected. On the other hand, all the possible models are equally admissible, and one is free to expand 
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whatever, however exotic, in the hope that the experience might come handy on an occasion. 
Traditional mathematical objects are essentially static: they are just somehow given, and a 

mathematician is only to study the already available features. Well, this is exactly like we used to look 
at the world before the XX century, under the reign of classical physics. A set thus understood is an 
outer thing on itself insensitive to all kinds of manipulation. Somebody we don’t know has made it for 
us that way, and we can count on that it won’t change or disappear while we are still working on it. 
Accordingly, given several sets, we can cook them all at once and the result will be as eatable for 
anybody else. 

For every set, the presence of elements is the principle #1. We do not mean that some other entities 
cannot have elements, they too; still, an entity without elements can be anything but definitely not a set. 
In particular, the phrase “empty set” is nothing but an abbreviated form of a statement like “there is no 
set such that…” In an appropriate context, this negative existence may acquire certain trait of an object 
(with a variety of equally admissible paradigms), but that won’t in the least make it a set. 

One set is not like another. When it is small, we can enumerate its elements one by one or grasp 
them all at a glance; in the worst, we can suggest an effective procedure for sorting them out in a final 
(within a current activity) time. For very big sets, this is no longer an option; the maximum we can hope 
for is to find an illustrative analogy: it is like a segment of a curve, a collection of functions etc. For 
some sets, we cannot afford even that; there is an opinion that such huge conglomerations should not be 
called sets proper. All right, let’s pretend to have got such a monster, one way or another. Now, there 
are two problems: first, anything relatively well-formed we encounter in our life may be or not be an 
element of a given set; that is, there must be an effective procedure to determine the membership of  
anything at all to our (however large) set. Second, declaring it to be a set, we must be able to support 
our words explicitly presenting at least one of its elements to the public; in other words, we need a 
practical ability of plunging the hand into the set and getting out (“selecting”) something that would 
undoubtedly be recognized as belonging to it (moreover, specifically as an element, not just a subset). 
The both procedures may come highly nontrivial; indeed, it is the technologies of the kind that any 
branch of classical physics is to eventually develop: every science is to historically grow to a clear 
recognition of its object area. 

Any idea of membership in the classical set theory comes from explicit set construction, that is, 
given a well-defined object we only restrict (directly or through imposed constraints) the right of 
different object to belong to a given set. No comprehensive universe can ever be defined within set 
theory; any known attempts have always lead to a logical circularity, the premises exploiting the features 
of what is to be eventually obtained. 

With sampling, things are no lighter. Admitting that we can be satisfied with a conventional 
technology, there is still a possibility of sets differently reacting to what we do: no arbitrariness, no 
mathematician’s caprice, but rather the demand of the object area we mean when using that very kind 
of mathematics. The traditional set theory deals with collections that cannot contain an object of a given 
type more than once. When we draw out an element in the course of sampling, we obtain a different set 
that does no contain that very element. In other words,  a set as an integral whole splits (decays) into 
two parts: an element and the residual set (absent in certain cases). We are well acquainted with such 
transformations in physics and chemistry. Of course, in that picture, human intervention in a mere 
locution, and we can as well consider interacting sets interchanging elements due to some objective 
happenings, in an entirely automated manner.  

The complementary approach is to allow several elements of the same kind within a single 
aggregate, which should not probably be called a set, but rather a “bag”. Provided there is an effective 
procedure for determining the number of identical elements, the bag will virtually be a set; in general, 
this is not the case. For set-based bag, one still has opposite choices. For instance, take a two-level 
structure, with the elements well-distinguishable on the lower level, but merged in equivalence classes 
on the upper level. On the contrary, in a statistical representation, we speak about the probability of an 
element’s membership in a set: the number of identical elements is effectively divided by the total 
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number of elements. For very large sets, the statistical approach may be preferable (and even the only 
possible). Any intermediate structuring would involve some generalized statistical weights and the 
corresponding statistical sums; practical considerations stand behind a particular choice. 

With all the diversity of paradigms, classical set theory refers to some “accomplished” sets that 
can be studied at any convenient pace. For a classical observer, any structural change will look like a 
“singularity”, “catastrophe”, or “phase transition”: the end of a world, and the beginning of another. 
Here, we are interested in the smooth evolution within the zones of continuity; in their meeting points, 
any stable structures are assumed to completely form during the time (or instant) between the two 
consecutive acts of “measurement”. 

A quantum experiment is primarily different from a classical setup by the observer’s intervention 
in the motion of the system to be observed: first, we prepare something observable, and then try to figure 
out what we have really prepared. Classical experimenting is following that scheme too, but the classical 
act of creation is in no way related to the process of observation: the two activities are well-separated in 
space, time, or however else; roughly, an already prepared system lives long enough to forget about 
those who gave birth to it well before somebody else would wish to study. A quantum system is 
consumed immediately, in the very time of its arrangement. Similarly, a movie differs from a stage 
show, correspondence from live talk. As usual, there are minute gradations, and the distinction of 
quantum and classical sets can only exist on a specific level of hierarchy unfolded in one of the possible 
directions. 

Quantum dynamics proceeds entirely inside a classical singularity point; for a quantum 
description, the whole classical motion before and after restructuration will serve as the initial and final 
state, the asymptotic conditions. The matter of the fact is in there, but we cannot directly observe it 
(without breaking a quantum system into classical parts) and hence must guess by the side effects, 
comparing the incoming and outgoing structures. 

A quantum set (or, generally speaking, a bag) is a formally prepared system in one of the possible 
states; this can be conventionally represented by the abstraction of a “state vector” A . All sets that can 
be produced using the same preparation technique constitute a kind of universe: metaphorically, we call 
it a “configuration space”. To determine whether an element a belongs to a set A, we compute the 
number (an “amplitude”) a A , with the square of its modulus taken for the degree of the element’s 
membership in the set (statistical weight). Using the same vector metaphor, one could consider an 
element as a “functional” over the configuration space of a specific level. The ensemble of such 
functionals will determine the object area of the theory. In other words, this is what we want to 
eventually get in the course of activity, its practical outcome, a product. 

A one-element set containing a single element a could be denoted as a , with 1a a =  (in 
general, the character “1” may stand here for something far from being a number; for instance, a kind 
of δ-function, that is, yet another functional). For all the other members b of the object area, 0b a = . 

So far, no significant difference from a classical set/bag theory have been introduced. The 
transition from probabilities to amplitudes does not change anything on itself; it is no more than a kind 
of substitution of variables, a change of viewpoint; with the classical weights of the elements as the only 
outcome, the benefits of the new formalism are rather obscure (if not doubtful). This will be so as long 
as we deal with the earlier prepared sets and do nothing except measuring the degrees of membership. 
Any kinematic picture is bound to expand on the level of macroscopic (classical) observer, since all we 
need from a science is a number of practical things ready to use in our everyday life. Essential differences 
can only be found on the level of dynamics: with classical sets, we combine the observables (statistical 
weights), while the interaction of quantum sets means combining amplitudes. 

As we discuss mathematics, which is basically a science about abstract structures, dynamics 
cannot directly enter a mathematical theory and it must be represented by specific structures. Within the 
quantum paradigm, we associate any state change (motion in the configuration space) with “operators”. 
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Immediately, this concerns set transformations, that is, set operations defined on the current universe; 
however, any set comparison is also a kind of transformation, and hence various relations between sets 
must also be representable with operators, though possibly of a different kind. 

In particular, the relation of an element’s membership in a set requires reconsideration. The idea 
is blazingly simple: one cannot compare qualitatively different things (belonging to different levels of 
hierarchy). Elements are comparable with elements, sets with sets. To compare elements with sets, we 
need to somehow bring them to the same type. The traditional notation a A∈  is a mere abbreviation for 
a sequence of nontrivial acts, each with their own conditions of feasibility. Most such assumptions never 
come to a clear wording: usually, a mathematician just believes that his abstract world is regular enough 
to justify any formal manipulations that lead to the desired result. Numerous logical strains drive some 
mathematicians to abandoning the very notion of an element, so that the whole theory is restricted to set 
comparison; this does not help much, just postponing the difficult questions that will come back 
elsewhere, in a new formulation. 

In quantum set theory, sets are represented by “state vectors”, while elements are represented by 
“functionals”. The difference strikes the eye. Establishing any interrelations is quite an undertaking, 
with different technologies leading to very unalike theories. Still, in any case, we have two basic options: 
either elements are to be transforms to sets, or the other way round, sets to elements. The third way, 
bringing the opposites to a new synthetic entity, would virtually break the boundaries of set theory 
proper.    

The former approach is possible using a special set operation, projection: its intuitive sense is to 
pick out a part of a set (or a subset, in the language of the traditional set theory). For a single element a, 
the corresponding projection operator is commonly written as a a , so that the projected set (the 

outcome of projection) would take be pictured as a a A , which apparently puts each element 
(functional) in correspondence with an appropriate one-element set (vector). So, in a given object area, 
a set formally becomes a linear combination of one-element sets: 

( )aA a a A a Aψ= =∑ ∑ . 

The same set can be considered in a different respect (in another object area), which would results in a 
new expansion of the same type: 

( )bA b b A b Aψ= =∑ ∑ . 

This “completeness condition” is often formally formulated as 

1a a =∑ , 1b b =∑ , 

but we must keep in the mind that the configuration spaces for elements a and b need not coincide: in 
general, no transition from one “basis” to another is meant, as we can treat the same thing many 
alternative (or complementary) ways. For instance, a graph can be represented by a collection of nodes 
connected by arrows; but it can also be treated as a number of arrows connected by nodes. One can 
control a computer using a keyboard, in a command-line interface; but the same controls are often 
available in a graphical interface, with just a mouse click. In both cases the effect is the same, despite 
all apparent differences. 

It should be noted that the dimensionality of a basis is not related to the size of the set. For 
example, in atomic physics, the same quantities can be evaluated by either an integral over the 
continuum states or a sum over a specially designed discrete basis. In logic, we use a two-element basis 
(just T and F) for a whole lot of the possible statements; their object content and practical meaning are 
irrelevant for logical valuation. Everybody knows, that the same problem can be solved using a standard 
but cumbrous approach, or in an unexpected and elegant manner. 

Generally speaking, the product of an activity is different from its object (the raw materials and 
available technologies). Still, in certain situations, both the object and the product are considered in one 
of the possible aspect, so that the difference is effectively lifted. Thus, in market economy, both material 
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and spiritual reproduction are regarded as the metamorphosis of exchange value; similarly, in the 
structure of a scientific theory, deduction moves from a number of truths to other truths. 

In real life, an orthogonal basis is often more comfortable and illustrative; still, just like in 
classical theory, orthogonality is not indispensable: the presence of one element in a set may (to certain 
extent) mean the presence of another. In quantum theory, orthogonality means that every one-element 
set is a eigenstate of a specific operator. 

The transition from one basis to another can be expressed as 

A a a A b b a a Aρ= =∑ ∑ . 

That is, 

( ) ( )b ba aA Aψ ρ ψ=∑ . 

In the simplest case, when the basis spaces of a and b are defined in the same universe, the “density 
operator” ρ can become identity, and we speak about equivalent element representations of the set. In 
general, one still needs to bring one object area to another to ensure comparability; the way of such 
reduction depends on the intended applications. 

Treating sets as collections of elements implies the ability of explicit construction. As in classical 
theory construction is well separated from observation, there is an illusion of the simultaneous presence 
of all the elements of the set: they all are in the view field, and no element can be preferred. Quantum 
set theory represents addition or removal of an element by the corresponding operators: the notation 

;a A a A+ =  means that, acting with the “creation operator” a+ onto the set A, we obtain a new set that 
is likely to (but, as indicated below, will not necessarily) contain the element a; we expect that 

; 0a a A ≠ . The inverse operation is to act with the “annihilation operator” a– onto the set ;a A , 
admittedly restoring the set A. Any finite extensions of a given set A can be constructed in this manner; 
here, the set A plays the role of “vacuum”, a reference state for the rest of the theory. One might get 
tempted to take the empty set for the base and thus develop an “absolute” theory. However, the empty 
set is not really a set, and we should not treat it as a regular set, and, in particular, we cannot act on it 
with any operators defined for real sets. Similarly, in modern physics, vacuum is a sheer conventionality, 
a level of reference. Coming across a formula like 0 0a− = , we must take it in the idiomatic sense, as 
an expression of the a variety of constraints imposed on the physical system; in many cases, annihilation 
operator for a particle a can be considered as creation operator for its antiparticle: 0a a− = , so that 
a system might admit states with both particles and antiparticles (like an electron-positron pair, or the 
coupled motion of the free electron and the ionic hole in atomic ionization). Nothing prevents us from 
considering ;a A a A− =  as a set with a hole (an anti-element); the specific implementation of element 
addition or removal depends on the intended applications. For instance, adding an element to a set will 
not necessarily be a kind of creation: it may just increase the numbers of elements of the kind (like in 
the case of electron capture by an atom or an ion). In the same way, element annihilation may just 
diminish the “weight” of that element in a set, provided the element and the hole instantly annihilate 
leaving no trace of the event in the resulting set. In the simplest case, when the set is not allowed to 
contain more than one element of the same kind, creation and annihilation operators are idempotent: 

,a a a a a a+ + + − − −= = . 
A sequential application of several creation/annihilation operators will produce many-element 

sets: 

, , , ;a c b a A a c b a A− + + + = . 

The order of operation may be quite significant, and it is only in very special cases that the set { , , , }a c b a
can be identified with the set { , }c b . 

With quantum elements “interfering” inside a set (however this interference is implemented), the 
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state ;a A  can no longer be understood as a A . Some very simple sets can be formed as products 
of one-element sets (the eigenstates of a particular operator); such states (and their non-degenerate 
combinations) are called “pure”. Given a “complete” basis, we can “enumerate” the elements of the 
incident set: 

A z z A= ∑ , 

so that 

; ; ( )bc za A a A b b a z z A b c a z Aρ ρ ψ+ += = =∑ ∑ . 

In this way, addition of an element to a general set can be reduced to a union of two-element sets: the 
new element a is to be sequentially coupled with each of the members of the base set. This obviously 
corresponds to the similar expansion in the traditional set theory: 

{ } { , }
c A

a A a c
∈

∪ =


, 

though quantum theory also demands accounting for interfering modes of virtual transition from one 
state to another. 

Since we relate creation and annihilation operators to elements rather than sets, the union of two 
arbitrary sets is not always definable. Still, when the two sets have been produced starting from the same 
incident set (the “base”, or “vacuum”), there is an option of considering the composition of the 
corresponding production operators as production of the union. This might be compared to the atomic 
states with different degrees of ionization. For yet another analogy, take the production of natural 
numbers with the only fundamental operation, the increment; the sum of two natural numbers is already 
an expansion of the original theory: this binary operation is imported from outside, being defined on a 
different level as a class of isomorphisms. 

In certain cases, it is possible to define the union for the sets produced from difference base sets; 
this corresponds to the transition form atomic to molecular physics, with only the “valent” electrons and 
holes participating in the formation of the whole, while the atomic (ionic) cores are treated as relatively 
independent of each other (that is, the vacuum for the union equals the product of the original base 
states). Numerous options are possible, here too. Thus, one could compare the classical union as an 
analog of the covalent bond, with all the electrons equally belonging to each of the atoms in the 
molecule. In the opposite case, we obtain something like ionic bond, when the elements of one set get 
compensated by the holes in another. There is also an analog of the hydrogen bond, with no real union, 
but rather an “artefact” of the usage of a common basis.  

The generalization of finite sets expansions onto infinite (countable or not) constructs is rather 
straightforward. From the practical viewpoint, it means considering a higher level, reflexive activity: 
instead of performing individual operations, we start constructing those operations using a regular 
approach. Like any hierarchy, set production can be folded into a “point”, and then unfolded into a 
different hierarchical structure. 

All the possible “interactions” between sets (set-theoretic operations and relations) are expressible 
through the combinations of creation and annihilation operators. Every special theory involves a specific 
collection of fundamental (elementary) interactions, so that the rest of the theory could be deduced from 
this axiomatic core. Since we are to eventually obtain a quite definite product, we reduce the result of 
each operation to the same reference basis; that is, the different combinations of elementary operations 
(the sequences of interactions) may lead to the same (in the sense of practical indistinguishability) set, 
while the interference of such virtual processes is reflected in the specific overall structure (spectrum) 
of the resulting set, up to the impossibility to obtain certain sets from the base (which is known in physics 
as selection rules). 

This is the high time to ponder a little on the meaning of set comparison. What does in really 
mean, “to be the same”? The equality of elements is an entirely practical issue, it is determined by the 
organization of the object area. As for the equality of sets, opinions differ. It is usually said that two 
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finite sets are equal if, and only if they contain the same elements. However, even that intuitively 
appealing definition is implicitly based on very thick assumptions about the object area and the sampling 
procedure (starting from the very possibility of enumeration). The situation is much worse with infinite 
sets, where we need to enumerate the elements of the both sets and compare them to each other in a 
finite (or even infinitesimal) time. Once again, quantum physics readily comes to mind, with the finer 
details of interaction “packed” in a single macroscopic point (or a moment of time), with the only 
observable outcome of a statistical distribution, a spectrum. Still, a similar sheme is possible in classical 
theory as well: consider one of the sets as a kind of a filter, a barrier, with the incident flow of the other 
set’s elements that can be absorbed (or reflected) by the similar elements of the filter set; if there is 
nothing on the other side of the barrier (no outcoming elements), one can state that the incident set is 
less than the filter set (hence being its subset). Reverting the situation, with the incident set and the filter 
interchanged, we test the inverse relation: is there is still no output, the two sets are equal.  

Obviously, this mental experiment is only one of the possibilities; however, it is enough to 
comprehend the idea of set comparison as a synopsis of numerous assumption about the character of 
interaction and the principles of dynamics. Just change the experimental setup, and you may get an 
entirely different picture. Well, there is nothing really new: for instance, there are different mathematical 
definitions of dimension, and we need to investigate the range of their compatibility. Similarly, with 
very large sets, we speak about their equinumerosity (or, at best, isomorphism) rather than true equality. 
Still, every man of reason would perfectly distinguish the sounds of speech from the graphic signs 
denoting them in the international phonetic alphabet: one can never convert one into another; the two 
sets are interrelated but not equal. In the same manner, even natural numbers are not the same as odd 
numbers, despite the fact that the two sets can be entirely mapped onto each other. The same score can 
be played with a violin, a piano, or an organ; but these instruments are in no way “isomorphic” in an 
orchestra. 

The quantum paradigm brings in certain amendments, adding a “built-in” uncertainty, “partial” 
membership. With all that, the procedure of “filtering” one set with another is perfectly reproducible in 
quantum set theory; moreover, the transformation of a set into a filter here becomes a simple formal 
trick: all the element creation operators for one of the set must be replaced with the corresponding 
annihilation operators. As the resulting “holes” (“anti-elements”) annihilate with the elements of the 
incident set, we immediately get the spectrum of differences in the end. That is, for the sets 

, ;b a A b a A+ + =  

, ;y x Z y x Z+ + =  

the result of their comparison is given by the amplitude 

, ; , ; ( ) ( )y x Z b a A Z x y b a A Z x y b a A Z D Aν νµ µν ν µ µ ψ ψ− − + + − − + += = =∑ ∑ . 

Under certain conditions, given the equality of elements a = x, b = y, this expression will evaluate to 
Z A , which is unity for equal base sets. Of course, in more complex constructions, such reduction to 

unity will not guarantee the complete equality of sets; however, if the virtual transitions can compensate 
each other to that extent, this means that one of the sets cab be effectively transformed into another, and 
hence be its fair replacement in a practical sense. Considering this expression as a function of some 
“macroscopic” parameters, one gets a full-fledged spectrum, where any virtual compensations will 
reveal themselves as structural peculiarities (e.g. resonances). 

Quantum set theory does not just extend classical theory; it eventually suggests a bunch of specific 
implementations suitable for particular purposes. Similarly, in physics, any “theories of everything” 
admit numerous observable “landscapes”. The choice is never arbitrary; our practical needs will select 
the acceptable solutions. Such practically-oriented mathematics will no longer be a mere play of thought: 
it will become sensible and truly meaningful. 

Nov 1985 
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Abstract Pictures 

The science of mathematics (as any other science) is to reduce our daily problem to sheer 
formalities. And that’s alright. Since, otherwise, we would get stuck in reinventing whatever has already 
been experienced, with no time for far-reaching creativity. However, as long as a human being is 
different from a bee, one cannot be completely satisfied with the efficient ways of being; there is an 
ardent desire to grasp the whole thing from elsewhere, from a neighboring universe. Which is commonly 
known as intuition. Just cultivate it, and the formalities are no longer restrictive, and no distance is too 
far to march. 

Well, there are people and people. Intuition on one kind may be inapplicable to a person of another 
constitution. Some will enjoy the idea of a sequence of actions: the “Dao”, so to say, the procedurality 
as such. With the funny pictures as an occasional result. Some others, on the contrary, would hate being 
too algorithmic: they prefer a visible thing, to look at it from every side and finally decide. Similarly, in 
music, there are both melody seekers and harmony feelers. The third way is related to instrumental 
intuition, practical sense, the ability of build it, picture it, and play it on the fly. Which is commonly 
known as talent. 

Mathematicians have intuition of a special flavor. Any order is due to numbers; any picture are 
in the reign of geometry. Still, numbers tend to gradually turn into abstract structures, while geometry 
gets drowned in homeomorphisms and reduced to numerical (topological) invariants. The talent of math 
thus grows into logic, the sense of the essentials, the ability to withdraw from the particulars. 

In real life, particularity is much more helpful. It’s a pleasure, to discover still finer details, one 
by one. With all that, any subtleties are chaotic and dull on themselves; that is why we need to attach 
them to some solid principle, thus putting the ocean between firm coastlines that would justify any pain 
and trouble. With a bright and vivid abstraction, the storms are tender, and no calm is dead. 

Alright, let us amuse ourselves a bit with browsing the fancy of visualized numbers. 
Numbers are all different from each other, just like people. Quite naturally, everything begins 

with counting: one, two, three, four, five, I caught a fish alive; with a fish live indeed, I don’t need to 
proceed… Why? Because the basic idea of the process is already clear: there is a certain direction to 
mark-up at some pace. 

In the same manner, rational numbers are readily visualized as a couple of independent directions, 
with a specific pace along each. Something like a planar grid. Now, a practical fish breaks in and asks: 
what if we are going like that, but in the same direction? Will we come to anything common, or never? 
This happens to depend on the step size: for some combinations, there is a consensus, while some others 
give no chance. In the first case we speak of commensurability, or rationality. If everybody was rational, 
the common order would be easily attainable, so that all numbers were pictures by the points on the 
same line, and one could always find whether a particular quantity was great enough, or lacked 
something. Is that any different from natural numbers? Yes, it is, since we have to seek for a common 
measure every now and then, and the same thing will be called differently, depending on the unit system. 

Perfect. Let everybody come to an accord and be happy. Unfortunately, not everybody can. There 
are all kinds of incommensurable, irrational… Just like in real life: they are much more plentiful than 
the rational elite! They are tremendously numerous, and this is not a mass to ignore. They form the very 
substance, the reality of the line, where rational numbers are so comfortable and spacious; that is why 
they are called real numbers. For each rational, there are more irrationals around than the quantity of 
rational numbers altogether. In any however tiny neighborhood. On the other hand, every real number 
can be gripped in a vice of rational numbers, as tightly as needed; this conveniently restores the complete 
linear ordering. 

In the world of limited opportunities, there are no other completely ordered number systems. That 
is, any order at all brings the same image to the inner sight: a smooth line, which can easily be pictured 
as straight, provided we can close the eyes and leisurely glide along. This, too, has a name: continuity. 
Pits and bumps may break the spell sometimes; however, if they are not too many, the overall impression 
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remains intact. After all, real numbers become a universal measure, with any distance expressible as a 
real number. Somewhere in infinity, beyond the borders of our world, there are other number-like things. 
For instance, the (ordinal) number ω (or rather ω0) that is greater than any other integer. The number ω1 
is uncountably greater, and an infinity of (hyper) integer numbers can fit between the two. The overall 
order is thus extended onto infinite numbers; and for each infinity, there is the next, with no end. A 
serious person would not run after such intractable objectives; it is always commendable to keep in strict 
bounds and pursue a real purpose. That is, instead of idle promenades, better go straight from the point 
A to the point B. Or, in the numerical language, from zero to unity. Of all the real line, we are only 
interested in the segment [0, 1]. Thus we can be sure to reach the intended destination after a finite 
number of steps, for an arbitrary step size. To avoid racing through, just put a wall in the end. That is, 
we consider the segment [0, 1] together with its boundaries; some may wish to call it a closed manifold. 

One is lucky to find that the number of points in the segment [0, 1] is no less than on the whole 
real line, and we do not miss anything. Rational number are also present here in full. How many? One 
cannot tell for sure; but this does not prevent us from naming. Let us denote the number of rational 
numbers with the term “aleph-zero” (ℵ0), while the quantity of real numbers is associated with the word 
“continuum” (also known as “aleph-one”, ℵ1). There are all indications that the “cardinality” aleph-zero 
is strictly less than continuum. There are different opinions on whatever lying in-between; theoretically, 
we are free to fancy an entity like that, but nobody has managed to show up with anything palpable. Just 
console yourself with the well-established existence of quantities greater than continuum. 

Indeed, imagine that every point of the segment [0, 1] is to be labeled with a number from the 
same range. Obviously, this is always possible, since the number of labels is exactly the same as the 
number of point to label. In this case, we say that there is a function form the segment (the “domain” of 
the function) into itself. In general, some points may bear the same label; such functions are not 
invertible, as one cannot unambiguously identify the prototype for any given function value. Well, 
nothing special, this is how life goes. Still, we can take all the namesakes together and declare that they 
constitute a kind of community, a subset of the segment [0, 1]. Now, the collection of all such subsets 
is found to be much vaster than the real axis; this means that the numbers of all bounded functions on 
the segment is greater than continuum. There are even greater cardinalities. But why? To start with, 
some vision of just one greater-than-real thing would be quite a deed. 

As a first impulse, why not reproduce the trick with projecting the plane onto the real axis, just 
like we did to produce rational numbers? But look, thus “closing the fan” we got no increase of 
cardinality: the quantity of natural and rational numbers are the same (aleph-zero). Similarly, the number 
of points in a plane is the same as the number of points on the real axis (continuum). Still the basic line 
of though is quite acceptable; we only need to follow it a little farther. 

One can easily imagine a square or a cube. The generalization to higher dimensionalities is rather 
straightforward. Many usual statements about our “domestic” space are directly applicable to abstract 
higher-dimensionality spaces. Yes, extrapolations may occasionally fail; the search for such catch-tricks 
(and striking teasers) has always been a well-gratifying mathematical amusement. With all that, there is 
an intuitive idea of a many-dimensional space, a kind of an abstract picture. We know that an ordered 
pair of points (at least close enough to each other) determines a spatial vector, which has both length 
and direction. Length is just a number, and we can naturally evoke the picture of a line. Imagination 
does not support higher-dimension angles; still, any two vectors lie in a plane, and the plane angle 
between them can be extracted from the scalar product. With a little more effort, one can picture all 
kinds of bodies, of three or more dimensions. Something floating inside a hypercube. 

The axes of a many-dimensional space can be enumerated in some specific order. The transition 
from one enumeration to another does not change the overall geometry; still, some of its properties may 
be more tractable in a dedicated representation. The sequence of dimensions determines the orientation 
of the space. As the very possibility of axis enumeration implies an outer observer taking the space as a 
whole, it is not always possible to transform one geometric object into another by a continuous 
movement within the space, preserving the orientation of the both. 
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Now, let’s look at the space of functions from the segment [0, 1] into itself. Admit that every 
point x of the segment corresponds to an axis of many-dimensional space; the value of the function in 
the point x is treated as the coordinate in this dimension. Then, every function can be geometrically 
represented as a point in the hypercube with a huge number of dimensions. Yes, their number is 
continuum. But this does not deny the spatial essence of a function, and we still have the geometry of 
plane and a 3-dimensional body, with the rest built on by analogy. 

Note that physics has long since dealt with the spaces of infinite dimensionality. In quantum 
mechanics, state vectors may have infinitely many components, with a liberal mixture of the discrete 
and continuous spectrum, often adding some greater cardinalities. This does not prevent us from doing 
sensible calculations (though, possibly, not too rigorous from the mathematical standpoint). In fact, 
physical spaces are even cooler: there are also inner (“spinor”) dimensions in each point! Here, let us 
keep on with a rather modest imaging. 

A source of infinite amusement is to determine the classes of functions that correspond to the 
typical geometric objects, like point sets (“crystals”), curves, planes, bodies. For instance, the main 
diagonal of the hypercube pictures the family of functions that are constant on [0, 1]. It is obvious that 
all the subsets of the segment [0, 1] lie in the vertices of the hypercube. Indeed, every subset is associated 
with a characteristic function that takes only two values: 0 or 1. A continuum-sized sequence of zeros 
and unities, by construction, specifies one of the vertex points. In particular, with the “natural” 
orientation of the hypercube, when the sequence of axes coincides with the segment [0, 1], the empty 
set is logically found in the origin of the coordinate system; it is represented by the continuous sequence 
of zeros. The opposite (the most distant) vertex of the hypercube corresponds to the sequence of unities 
representing the whole segment. Similarly, some other families of functions can be visualized as many-
dimensional entities embedded in the hypercube. This may suggest useful implications. 

Geometry will only respond to its name, when we can measure something in a space. In the 
ordinary (Euclidean) spaces, this is achieved using a multidimensional version of the Pythagorean 
theorem. By analogy, one can define the norm of a function as the distance from the origin: 

2 2[ ( )]f f x dx= ∫  

In the same manner, the distance between two functions is defined as the length of the difference vector: 

( )22
1 2( ) ( )f x f x dx∆ = −∫  

In particular, the distance between the opposite vertices of the hypercube equals 1, while the distance 
between any two «adjacent» vertices (forming a finite- or countable-dimensional hypercube) equals 0. 
This is naturally complemented with the notion of the angle between two functions: 

1 2 1 2cos ( ) ( )f x f x dx f fθ = ∫  

We do not need to precise the sense of integration in the above formulas. Each definition has a peculiar 
(and possibly useful) geometrical interpretation. 

With this definition, certain thing look quite naturally. Thus, the norm of a constant function is 
trivially equal to its value. The distance between the functions  f(x) = a and f(x) = b is |a – b|, while the 
cosine of the angle between them is always unity: as expected, such functions are parallel. The squared 
norms of the functions f(x) = x and f(x) = 1 – x are both equal to 1/3, as well as the distance between 
them; the cosine being estimated as 1/2,  we get the angle of 60º. These two function represent the 
family of unitary transmutations on the segment [0, 1] (changing the orientation of the coordinate 
system). Clearly, such a tangled function can always be ordered by the function value and thus reduced 
to the same simple form f(x) = x ; consequently, the norm of any transmutation is also 1/3, while the 
mutual distances and angles may significantly differ. 

This brings us back to the possible specifications of the integral. For one possibility, to compute 
the integral of any function, we first rearrange the dimensions of our hypercube to monotonically order 
the function values; after that, the integral is defined as the area under the resulting curve. Since only 
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regular functions are involved, there are no serious technical intricacies, and any integral will evaluate 
in a number between 0 and 1. Of course, some precautions are still necessary. Thus, for a non-bijective 
(but otherwise smooth) function, the equal function values get to the “adjacent” points of the rearranged 
segment, and the corresponding measure (the elementary length dx) should be multiplied respectively. 
For an alternative picture, one might redefine the “density” of the points on the segment. However, this 
does not much hinder geometrical vision. 

The characteristic functions of the subsets are, therewith, conveniently tractable. After 
rearrangement, every such function becomes a unit step function: zeros first, unity values to the end of 
the segment. The norm is then defined as the length of the unity part (which is exactly the number of 
elements in the set, its continuous measure). For example, the distance between two characteristic 
functions is determined as the measure of their union, minus the measure of the intersection. 

Well, infinities are certain to have at least some crazy turns. For instance, the general formula 
evaluates the distance between the constant functions 0 and 1 (the opposite vertices of the hypercube) 
as 1. But everybody knows that length of the diagonal in the unit plane square equals 2 ! Here, it 
happens that the diagonal is unity, with all the edges of the same size. Quite a mystical thing. 

At the second sight, it’s no wonder. The purely Pythagorean diagonal of the N-dimensional unit 
cube equals N . With N → ∞, one obtains an intractable something of the ∞  type. To normally 
work with such constructs, it is convenient to normalize all the lengths: in the finite-dimensional case, 
mere division by N  is enough; for continuum, we get a kind of density in the sequence of the spatial 
dimensions. In the same manner, one could normalize the usual two-dimensional square too, which is 
equivalent to the choice of a different unit for its diagonal, so that to make its length equal 1, just like in 
the infinite-dimensional space. This is a quite logical approach: in physics we often switch to some 
“natural” unit sets; similarly, relativity relates all the speeds to the speed of light, which corresponds to 
some experimentally observed symmetries. 

There is a much more annoying problem. The integral definition of the norm is not unambiguous, 
since any integral is evaluated up to an arbitrary contribution of zero measure. That is, in fact, we do not 
determine the distance between individual functions, but rather between some classes of functions. 
Mathematicians would not much bother: their science is entirely like that. A man-in-the-street would 
prefer a nicer definition of distance to comply with the visible separation of spatial points. For instance, 
a circle (or a sphere) with the center in an inner point corresponds to all functions equally distanced from 
a fixed function. The variations of zero measure heavily spoil the picture, since they form an infinite 
class of functions, and the corresponding hypercube points are everywhere dense. What, then, is left of 
the geometrical obviousness? Things are even more aggravated, when it comes to the metrical definition 
of the vicinity, neighborhood, open and closed classes of functions etc. Any topological constructs are 
no longer simple and intuitive. 

Yes, one can observe that the class of all functions can never be completely ordered and thus 
packed into the real axis. Its cardinality is higher than continuum, and that does it. One could practice 
severe self-restriction, considering very simple functions (say, diffeomorphic to a constant). In this case 
the hypercube closeness will coincide with metric proximity, and one will operate with trajectories, 
smooth transitions in the function space. However, many interesting functions will be left beyond that 
narrow scope, including permutations and characteristic functions. There is yet another approach: 
instead of the common space for everything, consider a layered space, a hierarchy of function classes, 
so that the usual metric is retained within each class, while any aggregate estimates are feasible on 
demand. For example, an arbitrary function can be represented with a (direct) sum of components: finite 
point set based subsystems, infinite discrete subsystems, and a number of continuous (or piecewise-
continuous) areas. Instead of a single distance, we thus get three respective distances, one for each 
independent component (level). That is, instead of bluntly ignoring the regions of zero measure, we 
account for their contributions in a special way, treating them as singularities. In a different formulation, 
one could speak of singular measures (of the δ-function type). Provided the corresponding subspaces 
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are orthogonal, the overall distance could be naturally defined by the sum of squared partial distances 
(normalized in a standard manner). One is free to suggest any other modes of aggregation, depending 
on the practical needs. In this way, the functional geometry won’t become too cumbrous, leaving much 
room for graphical intuition. 

May 1992 

Objective Set Theory 

The traditional set theory says nothing bout the elements of a set. Admittedly, sets can become 
elements of other sets, without losing any of its set qualifiers while treated as an element. Such an 
approach suffers from too much generality, and the indeterminacy of the basic notions may lead to all 
kinds of paradoxes. To overcome this difficulty, mathematicians have already weakened the original 
universality and come to considering classes as different from sets, and less restrictive. The next logical 
step would also introduce the qualitative difference of a set and an element. One cannot substitute 
elements for sets or sets for elements; mixing elements and sets within the same argument (or formula) 
would be a logical fallacy. 

In real life, any science is only applicable within its object area. Its abstract instrumentation will 
only mimic the real organization of the object. Otherwise, the theory is utterly nonsensical and of no 
practical use. Applied sciences do not need too much rigor: affordable recipes for everyday tasks are 
much more valuable. Even considering very different application, with some of them retaining a very 
high level of abstraction, we do not eliminate the obvious fact: there is something to study. 

So, why not explicitly lay some object area in the basis of a theory? For mathematics, the 
particulars do not matter; it is only important, that there are somehow organized objects, and one cannot 
arbitrarily introduce imaginary entities. For a set theory, the object area provides some universe U, the 
ground level of the theory. On the next level, we get sets proper, as collections of objects from the 
universe U. In contrast to the traditional approach, sets cannot immediately belong to the universe: they 
are objects of a different kind. A one-element set {x} is not the same as the element x. The relation of 
containment a ∈ A or non-containment a ∉ A connects two adjacent levels of hierarchy. We can employ 
the usual notation for relatively small sets, just listing its element if the braces: {a, b, c, …}. All thus 
included elements belong to the universe and cannot be sets. With this distinction, there are no problems 
of set formation by a common property: when the elements possess an objective property φ (compliant 
with the nature of the object and the logic of the theory), they can be taken together to form a regular 
set. The notation {x | φ(x)} is acceptable for any objective properties; moreover, each set will determine 
some objective property as common for all its elements. When elements are clearly separated from sets, 
reflexive conditions like x ∈ x are all out of reach. 

Generally speaking, not all the collections of objects from the universe U will represent admissible 
sets. Different object areas may impose their specific restrictions. Without such constraints, for each 
individual object x from the universe U, there is a one-element set {x}. For a finite universe one could 
speak of the set containing all the objects from the universe; however, in general, such a “universal” set 
may be unavailable. For example, some objects may be not present in U all the time; also, some objects 
may have mutually incompatible properties and hence they cannot be contained in the same set. From 
the very beginning, we assume that every set contains at least one element; the common idea of an empty 
set ∅ = {} may only appear in an object set theory in a metaphorical sense, as an abbreviation for the 
phrase “there is no such set that…” We say that, by definition, set is something with elements. When 
there are no elements, this will refer to an entity of a different kind, to be studied separately. 

If one set is equal to another (A = B), they are the same set, just differently labelled, as alternative 
construction paths may result in the very same collection of objects. The equality of sets is always 
understood as objective equality, the same property of real things. 
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One set can be a (proper) subset of another: A ⊂ B. Then we speak of a more specific property, 
narrowing B to its part A. Note that its is real objects from the universe U that are meant: some of them 
belong to one set without being contained in the other. Regardless of the number of elements 
(cardinality) the set B will be wider than the set A, if there are elements of B that do not belong to A, but 
not the other way round. 

On the set level the usual definitions of set union A ∪ B and set intersection A ∩ B will hold, as 
well as the complement of one set to another B \ A. However, the formal construction does not tell us 
anything about the existence of the resulting set. Thus, the union of two sets may fail to exist in the 
presence of certain constraints, when some elements are incompatible. Since there is not empty set, the 
intersection of sets must contain at least one element; otherwise we honestly admit that the sets do not 
intersect (are disjoint, or disconnected). Similarly, the complement is only possible for a proper subset: 
A ⊂ B. In other words, the availability of any set-theoretical operations is determined by the nature of 
the object; conversely, we can judge on the structure of the universe, on the basis of the available set 
structures. 

The collection of all the implementable objective sets can be treated as a higher-level universe, to 
construct the “sets” of sets; in respect to the object such constructs are classes rather than sets; that is 
classes are entities of a different level which they cannot contain objects from the universe and cannot 
be directly derived from the universe. 

While set construction mainly refers to the objective properties, classes are more appropriate to 
convey the logic of the theory, the way of treatment and interpretation. The different theories of the 
same can be built using specific principles of class formation. 

In the simplest case, when all the combinations of properties are possible, the class level exhibits 
a remarkable structure. For each one-element set, we can consider the collection of sets intersecting with 
that core set. In other words, we consider all properties compatible with a given object from the universe 
as a class, the collection of sets containing this very element. Since every set belongs to the class of any 
of its elements, the class level is entirely spanned with the above elementary classes. That is, classes can 
be uniformly mapped into the underlying universe, so that the level of hierarchy seemingly merge. This 
is known as hierarchical conversion: an element belongs to a set; but that set, in its turn, belongs to the 
corresponding elementary class. This three-level scheme represents here a formal theory, a mathematical 
model of an object area. 

There is yet another direction of unfolding the hierarchy: any given set can be mad a universe 
(base) for the sets of the next level. Such sets could be called internal, as compared to classes (“external 
sets”). Internal sets obviously correspond to the subsets of the base; still the two levels cannot be 
identified, as elements cannot be directly compared to sets. One can also observe that the collection of 
internal sets is limited by the available subsets; this may serve as one of the possible definitions of a 
constraint. The classes of internal sets are constructed in the same manner. With the rich enough original 
universe, very complex hierarchical structures could be developed. 

Now, let us take a couple of universes U1 and U2. Each of them will produce its own set-theoretical 
hierarchy. The components of these hierarchies cannot be immediately correlated, even at a similar level. 
This would be like arbitrary addition of millimeters with kilograms. The build a unified theory, we need 
to join the two universes in one, and then construct any higher levels. As usual, such a unification can 
be achieved in many ways. The two principal paradigms are given by sequential and parallel linkage, 
corresponding to time and space, the inner and the outer.  

The sequential synthesis will produce a universe that is known as a (direct, or Cartesian) product 
of the original components: U = U1 × U2. Each object from such a joint universe will be an ordered pair 
of original objects form U1 and U2 : x = 〈x1, x2〉. This is important, which of the two component universes 
is taken as first, and which follows. Even in the case when the two universes coincide, they will enter 
the direct product each in its specific quality, as the first and the second. Any of these positions may 
imply its own constraints, and there may be oriented constraints limiting the number of the admissible 
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pairs. The Cartesian-squared universe U2 is different from mere numerical power; in particular, in each 
pair 〈x, x〉, the object x in the first position is different from the object x in the second: the same object 
is taken here in its different aspects. For example, it may be taken at different time moments, 
significantly changing from one to the next. Of course, formally, we might adopt the inverse order as 
well. However, this will result in a different formulation of the theory. Thus, instead of x1 “precedes” x2, 
we will employ a different terminology, saying that x2 “follows” x1. The synthesis of the universes is 
objective; it implies a practical usability of the joint universe, the real distinguishability of the positions 
in a sequence. 

In this mode of synthesis, sets will contain various ordered pairs, accounting for the imposed 
constraints. Every element of a set includes the components of all the incident universes. Obviously, the 
existence of universal sets for both component universes would mean the possibility of treating the sets 
over the joint universe as subsets of the ordinary Cartesian product of sets. We know, however, that such 
global sets may do not necessarily exist, while the Cartesian products of the component sets do not 
always produce the same pair collection, especially in the presence of oriented constraints. 

Sequential synthesis corresponds to considering different aspects in the same object, which are 
relatively independent and can sometimes be studied separately. For example, the temperature and 
pressure of a gas, the width of a river and its depth, the same society in different epochs. On the contrary, 
parallel synthesis joins one universe to another in an outer way, as two “parallel” realities (for instance, 
the disjoint areas of the same space, or the components and phase states of physical mixtures). In this 
case we speak of a (direct) sum, or a superposition: U = U1 + U2. This sum is commutative, as we are 
interested in the very presence of the object rather than their ordering. In well-developed hierarchies, 
such superpositions may be formed with some weights on the component-universe elements. Here, the 
objects from the two components coexist in the same moment, and we can employ all of them. Then 
every set A of the joint theory will be representable as a direct sum of the component sets separately 
produced by each universe: A = A1 + A2. This differs from the usual set union by that the two components 
never mix up, independently participating in any set-theoretical constructions. In particular, one cannot 
speak of the overall number of elements, but rather retain two numbers, one for each component. 
Certainly, some combinations (direct sums) of the sets over the incident universes U1 and U2 taken 
separately may be absent among the sets of the joint universe; the existence of the result is to be 
established in every particular case, accounting for the imposed constraints. 

In respect to the elements of the sets, sequential synthesis could be considered as inner junction: 
every element of a set will be split in two components. Parallel synthesis acts in the opposite manner: 
the sets are taken as a whole and joint together without influencing their elements. 

If A = A1 + A2 and B = B1 + B2, the union of the sets can be defined as component-wise: 
A ∪ B = A1 ∪ B1 + A2 ∪ B2. Since there are no empty sets in an objective theory, every set above the 
joint universe will contain the both components. This is quite like a Cartesian product producing pairs 
of objects where there are the both elements, so that the positions in a cortege cannot be empty. That is 
why the product A ∩ B = A1 ∩ B1 + A2 ∩ B2 exists only when there are common elements in the sets A1 
and B1, A2 and B2, pairwise. Note that neither of the component intersections must necessarily exist in 
the hierarchies over U1 and U2 as separate universes; this does not prevent them from appearing in a 
composite set. 

In general, the universe U can unite many components, with different junction types. In such 
hierarchies, it is especially important to complement formal constructs with an analysis of the existing 
constraints. The correctness of judgment, in such a theory, depends both on its inner logic and the nature 
of the object. Let S be, say, a universe of symptoms, C will denote the individual contraindications, and 
M will be the universe of therapy schemes. Then the sets over the composite universe (S + С) × M will 
represent the possible instances of medical treatment. Obviously, only a part of the possible 
combinations will make sense. For a constraint, one could take the overall dynamics of the disease, 
which is to be directed to the final recovery, rather than the other way. The specific dynamics of 
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treatment will be representable in this scheme with a sequence of sets, to account for the possible 
changes in the patient’s state. 

For the sets over the composite universe, internal sets and classes (external sets) are define the 
usual way. Here, beside elementary classes, we will also get all kinds of projections, that is, the classes 
of set coinciding in several components. For instance, consider the parametrical family of sets 
A = A1 + *2 , where * stands for an arbitrary set over the universe U2. The class of all existing over U 
sums of that form (the projection onto A1) determines a class over U2, which could be called adjacent to 
class A; in the general case, such a class may be absent in the standalone hierarchy over U2, and its 
intersection with the native classes of U2 (if existing) will form the boundary of the family A in U2. 
Similarly, the classes of Cartesian projections can be defined as the families of sets with the elements of 
the type 〈x1, *〉 or 〈*, x2〉. As for elementary classes, the whole hierarchy becomes reflected in itself, 
since thus obtained structures can be related to some of the already introduced constructs of the theory. 

Of course, one is free to consider any other (logical) structures on the set level with the 
corresponding “classes of equivalence”. Still, arbitrary formal constructs won’t automatically become 
components of the theory; they yet need an objective interpretation. The correspondence between the 
classes and the objects from the universe can serve as a criterion of truth, limiting the applicability of 
formal operations. 

To resume: every objective set theory 1) requires some (not necessarily formally definable) 
universe; 2) builds a set level over the universe and considers set classes; and 3) identifies the classes 
with the objects from the universe. The arrangement of the theory will thus reproduce the organization 
of the object. 

August 2006 

Cardinal Hierarchy 

Everybody heard about the famous Kantor hierarchy of infinite cardinal numbers: the next level 
comes up in considering the set of all the subsets of an infinite set. One could enumerate these infinities 
with integers (finite ordinals): level-0 infinity corresponds to discrete sets, level 1 is reserved for 
continuum, all functions over continuum form level 2, etc. Of course one is free to discuss entities 
beyond this simple layered structure, up to considering uncountable infinite ordinals. 

In these terms, the notorious continuum hypothesis states that there is no intermediate cardinality 
between levels 0 and 1. The statement is very strong, and it cannot be either proved or refuted within 
the traditional axiomatic set theory. One could observe that this essential discreteness is mostly due to 
the binary character of the common mathematical rationality, which determines the way we construct 
power sets. Still, nothing prevents us from extending the idea of a set just a little, retaining the usual 
notions as natural limit cases. There is a generalization that allows to constructively demonstrate the 
inappropriateness of the continuum hypothesis in the generalized theory. 

Indeed, let us note that the elements of a set in the traditional set theory are joined in the set in an 
outer manner, as externally opposed to each other. Each element corresponds to the same counting unit, 
which is infinitesimal for infinite sets, though without losing its qualitative definiteness common for all 
elements; and this is why we can righteously compare then to each other and count them. Kantor 
hierarchy therefore provides a series of outer infinities. 

Now, assume that the elements of a set are no longer simple counting units, and each element is 
internally structured. For instance, a single outer space point (an element) could incorporate some inner 
space characterized by an appropriate Kantor power. In general, the organization of the inner space may 
vary from one element to another. However, if we are to study some objective integrity, there are good 
reasons to believe that the mode of unfolding is the same for all elements, so that their inner spaces 
should be at least of the same cardinality; in many practically important cases (like mechanical motion) 
one could confidently impose the demand of the same topology. 
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In the simplest case, the inner space is discrete (similar to the usual spinor components); this is a 
level-0 subspace. However, each point may also be innerly represented with a continuous area, a kind 
of zone, which makes it a set of level 1. Such situations are quite common in real life. For example, the 
perception of a pure tone of some musical height (a logarithm of sound frequency) subjectively pictures 
it as a distribution of heights in the vicinity of a well-pronounced maximum. From this observation, one 
can derive that the possibly sets of discernible musical tones form zone structures (musical scales), 
where each element is far from being a single point, but rather a continuum of the admissible deviations 
from the center of the zone. 1 What is to be taken for the cardinality of such a hierarchical set? It is 
certainly discrete, while, on the other hand, it is a union of continuous intervals. 

Let us define the cardinality (power) of a two-level set (with a uniform inner space structure) as 
a pair (K1, K2), where K1 and K2 indicate the cardinalities of the higher (outer) and lower (inner) levels 
respectively. In particular, inner space may be absent, which means that it effectively consists of a single 
element, and its level of cardinality is zero. With all that, a purely discrete set is characterized with the 
cardinality of (0, 0); a usual continuum has the hierarchical power of (1, 0); a discrete structure with an 
inner continuum should then be assigned the cardinality of (0, 1). These cardinalities can be naturally 
ordered in the lexicographic manner, first comparing the upper levels, then the lower levels (if needed). 
Obviously, (0, 0) < (1, 0). However, as naturally, (0, 0) < (0, 1) < (1, 0). That is, there is a hierarchical 
set with the generalized cardinality between discreteness and continuum. 

No doubt, the process can be continued on and on, as the lower-level elements are considered as 
complex, in their turn. Sticking to the first two Kantor numbers, the cardinal number of an arbitrary 
hierarchical set can be represented with a sequence (b1, b2, b3,…), where bk are either 0 or 1. One can 
readily observe that this is equivalent to a binary notation for some real number in the interval (0, 1); 
consequently, there is an infinity of cardinalities intermediate between 0 and 1. 

Of course we are free to consider much more complex inner hierarchies. For instance, the 
hierarchy of infinite ordinals can be reproduced in full. It is especially intriguing to consider all kinds of 
isomorphism between the spaces of different levels, which will bring us far beyond the trivial tree-like 
structures, with a number of circularities and loops. Calculating the cardinalities for such sets is a yet 
another interesting problem. 

July 1994 

The Quality of Negation 

As philosophers declare, the primary purpose of the human (or any other) reason is binding the 
world together, connecting things that can in no way get connected otherwise. If so, the traditional 
mathematical habit of interrelating seemingly different entities should be respectfully appreciated as a 
part of the common productive work. Life gives many examples of how the tricks of one branch of 
industry perfectly match the needs of another; the mathematical language may come quite handy for 
sharing such fundamental schemes, and its practical importance is beyond any doubt. Still a sober 
attitude to the available resource is no less valuable. We are a part of the world, and any reflection of 
that whole in powerful abstractions, however accurate, is bound to remain partial; no formal construct 
can pretend to an unreserved universality. That is, our ability to tie one mathematical object to another, 
up to eliminating any distinction at all, can never guarantee that these entities would not accidentally get 
stuck in an entirely new environment requiring a clear awareness of their difference, and hence a 
different mathematics, albeit envisaging a quite decent retirement for earlier theories. 

On the other hand, the multitude of peculiarities cannot appear but on the background of the 
primordial universality of the world, as there are no other worlds, and (therefore) no way out can ever 
open. In human practice (including mathematics), this results in the hidden presence of the sprouts of 

1 L. V. Avdeev and P. B. Ivanov, “A Mathematical Model of Scale Perception”, Journal of Moscow Physical Society, 
3, 331–353 (1993). 
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the future in the present and the past; every incidental guess reveals something that has long since been 
existing in the culture without attracting too much attention, silently waiting for its hour to come. Hence 
the typical technology of a scientific discovery: take a most plain and banal experience that would not 
even deserve mentioning in a good company, and pin up a couple of miserable subtleties that might 
eventually become great and meaningful. Those who are too lazy to format it as an academic hit may 
prefer the roads of the commonly known, with just a few philosophical deviations. 

Well, here too, let us take a perfect commonplace and wonder if there is some underestimated 
creative potential in there. 

Ask a not-yet-born baby ripening in a womb: two minus three, how much is it? You’ll get a prompt 
answer: minus one, of course! Our lazy philosopher comes to press on with a real stumper: and what’s 
that, minus one? The under-baby, scratching its head with a navel-string, thoughtfully mumbles: well, 
it’s a kind of number… a negative … exactly like one, but with the minus sign. This is enough to conclude 
that we are talking to a future mathematician: the lay people are ordinarily devoid of such clarity of the 
mind. Most would call this subtraction exercise improperly posed: it is not allowed to subtract a greater 
number from the lesser. Some would concede to the school answer (of minus one), with an explicit 
reservation that such numbers do not really exist, referring to sheer convention oriented to meeting a 
substantial enough positive individual, to clutch on him and diminish by an appropriate amount. In 
natural languages, being negative is invariably associated with something bad and wrong, some crazy 
dysfunction that should not normally happen. And, of course, there is an ancient profession whose 
representatives are firmly convinced that there are no negative numbers at all, and all we may deal with 
is positive records in the books, entries on a number of accounts split into the pairs like “we have — we 
need”, or “sums due — payments to receive”; active and passive records are distinguished accordingly: 
fortune estimate vs. accumulated debt.  

It is bluntly stupid to ask about the truth of all these viewpoints; each is certainly right, within 
their specific experience, and each requires as specific mathematics. In the pre-scientific times, it was 
commonly accepted that any particular thing can be characterized with a bunch of distinctive qualities, 
so that quantitative distinctions could be discussed within each quality. That is, first decide on whether 
it is in there, or it is not, and then inquiry for how much, where there is some. The absence we denote as 
null, while the present quantity can be numerically expressed as soon as some units of measurement 
have been fixed; the number 1 refers to the chosen scale for the specific dimension. An ancient geometer 
knew for sure that a line segment possessed some length, which did not depend on the mode of 
construction and the spatial orientation. Similarly, figures have area, and bodies have volume; when 
there is nothing measurable, the notions of length, area and volume are no longer applicable, and their 
usage amounts to a logical fallacy. 

With all that, people do not live by the present moment; they think about the past and the future. 
The past feeds memories; the future makes plans. One is free to judge in an emotionally human manner, 
regretting the absence of the former glory or impalpability of things to come. This sorrow is referred to 
in mathematics every time we put down the minus sign.  

An important note: compared to mere expression of the absence of something, the idea of the 
negative is a drastic step forward. No mere nothingness, but rather a kind of presence, albeit in an ideal 
way, inside the subject (or in any physical bodies, as an imprint or possibility). Obviously, such an ideal 
existence is somewhat different from real presence, and one should not confuse the two, lumping 
positive and negative experiences together. They are measured in different units. Nevertheless, they also 
have something in common: the very air of definiteness, qualitative homogeneity, and hence 
measurability. Which means that the uniform treatment of the positive and the negative is justified by 
their similarity in a certain respect, that is, in the context of a specific human activity, as long as we do 
not run off at the mind and disregard any distinctions at all. 

To moderate our math and avoid too formal an attitude to the problem, there are well-proven 
formal tricks. One of them amounts to the already mentioned separation of the debit/credit kind, which 
directly makes practically different things also theoretically different. The debit and the credit are 
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opposites, and one negates the other, but this negation is no longer merely quantitative, as it combines 
different qualities. Somewhere else, for the higher management staff, there is no difference, with one 
big bulk directly subtracted from another. Still, this is a faraway view, while operative accounting is to 
deal with the old two columns in the book. Once again: this is not a relic of primeval primitivism, or a 
moss-frown tradition; this is how the world goes round. Thus, biologically, everybody has a father and 
a mother; still, some children are brought up by a single mother, so that one parent is missing and comes 
with the negative sign; however, this differs from the actually having a single parent (for instance as in 
instance of parthenogenesis). That is, 2–1 is qualitatively different from the plain unity. It is only for 
school mathematics that all’s the same. 

In this line, monitoring resources will put everything that has ever come on the positive side as a 
present-tense fact. However, a part of that income has probably been partially consumed and is only 
present in memory; this is a past-tense negativity. Further, our current needs form a future-tense minus, 
that can significantly overweigh the present abundance. Note that positive numbers basically refer to the 
objective state of things, while negative contributions relate subjective feelings (at least within a single 
level of hierarchy); this may justify the position of those who consider negative numbers as merely 
conventional. 

To account for conventionalities, a mathematician can represent a “generalized” number s with a 
cortege of two components 〈a, b〉, where a and b are non-negative real numbers (as presumably well-
definable). The components a and b give, respectively, the positive and negative part of the number s 
which will conventionally be referred to as an additively split real number, or simply a split, to save 
space an the reader’s effort. 

Can we find anything like that in the history of mathematics? At every corner! For instance, 
rational numbers are traditionally introduced as pair of integers, with the rules of combining the 
components adjusted to our vision of the ordinary arithmetic. Similarly, complex numbers are defined 
through their real and imaginary components, with an appropriate specification of arithmetic. If so, why 
shouldn’t we follow the same well-beaten track to play with real negation? 

Treating the components of the cortege as the coordinates of a point in the plane, we effectively 
chose the positive and negative unity as the basis vectors of this space, denoting them as (+1) and (–1) 
respectively. Here, formally, (–1) is a monolith pictogram for some measurement unit, which may have 
nothing to do with the units used in the positive scale. Conversion of one unit to another will require an 
appropriate dimensional factor. 

By analogy with complex numbers (and linear algebra), a quasi-algebraic notation could be 
employed: s = a+(–1)b, with the basis vector (+1) traditionally omitted for brevity, but always implied. 
A minimal list of useful features of real splits could be illustrated by the table below, where the complex-
plane analogs are shown as well. 

splits complex numbers 
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1 2 1 2 1 2 1 2 1 2
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Of course, from the formal aspect, these equations are interdependent; however, our purpose is to stress 
the core of the approach, rather than adhere to rigor. Anyway, a deductive arrangement is entirely 
dependent on the strategy of arithmetization; for one possibility, one could depart from the algebra of 
splits with no reference to their inner structure (corteges and components); the positive and negative 
parts of a split will then appear in theory as functionals (mapping the space of splits into the space of 
positive reals), or as projectors (establishing correspondence between different splits). Since we keep 
on the tradition of building complex numbers over the real field, the negative unity naturally penetrates 
the rules of complex arithmetic. Still, nothing prevents us from defining (–1) as i2; in this case, the 
behavior of splits is to be derived from complex numbers. 

Since the non-negative real axis is already well-ordered, all splits can be divided into two classes: 
those with a > b (Pos s > Neg s) are called positive; those with a < b (Pos s < Neg s) are called negative. 
This definition does not imply any direct combination of the components; geometrically, we mean the 
subdivision of the whole space of splits (the first quadrant of the Euclidean plane, the area (+|0|–)  in 
the figure below) into separate subspaces, lying above or below the main diagonal (0|z). Any other 
subdivisions for all kinds of practical purposes are as contrivable. 

 
In the algebraic notation the negative unity (–1) may acquire the meaning of an operator 

(commonly known as negation) producing splits from other splits by the simple rule: the positive and 
negative parts of the split get interchanged. Graphically, this means reflection with respect to the main 
diagonal; in particular, the points of the axis (0|+) thus get mapped into the points of the negative axis 
(0|–). In the same manner, the positive unity can be treated as the operator of identity leaving each point 
as it is. In the component system, the positive unity is represented by the cortege 〈1, 0〉, and the negative 
unity by the cortege 〈0, 1〉. However, the (positive or negative) unity as an operator differs from the 
corresponding unit vector; negation as an action and as an action’s result means different entities. 

The transition from the component representation of splits to polar coordinates is formally the 
same as with complex numbers: 

( )cos ( 1)sins r ϕ ϕ= + −  

This layout may be useful to discuss certain intricate structural aspects; however, its justification can 
only come from a particular choice of relevant symmetries and metric. As we know, the traditional 
symmetries of the complex plane essentially differ from those of real splits. This is obvious from the 
very fact that splits are define in a single quadrant of the plane, so that extending theory to the whole 
plane would require introduction of yet another pair of unit vectors (for instance, p and q), as shown in 
the figure; thus generalized splits would then be formally written as a+(–1)b+px+qy, which resembles 
the quaternion structure. Imposing additional symmetries will “glue” some points together, folding the 
space in a specific manner. For common real splits the fundamental symmetry is 

+ 

– 
z 

0 
(p) 

(q) 
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( 1) 0
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where z is a positive real number. Graphically, this identifies all the points of the main diagonal, and 
any straight line parallel to the main diagonal forms a class of equivalence, effectively collapsing into a 
single point. The complex-plane analog 

2i 0c c+ =  
is quadratic in the imaginary unity, which naturally leads to the usual quadratic metric. By analogy with 
the orthogonality of vectors in the Euclidean plane related to the zero value of their scalar product, the 
equation 1+(–1)=0 could be interpreted as a kind of additive orthogonality of the positive and negative 
dimensions. 

Any symmetries of a general system (or the imposed constraints) will often diminish the number 
of its degrees of freedom, thus changing the effective dimensionality. For splits, we formally reduce the 
two-dimensional (or even four-dimensional, as in the “quaternion” extension) picture to a single 
dimension; this is an essentially nonlinear operation akin to projection. There are other types of 
projections, like the extraction of the positive or negative (real or imaginary) part, calculating the 
(quadratic or linear) norm, determining the phase etc. In ordinary life, we always observe any system in 
one of the possible projections, so that the existence of the others is to be somehow deduced. This is 
exactly like the choice of the gauge in relativistic physics. The unavoidability of projections is related 
to the complexity of inner motion; however, the symmetry of this unobservable behavior is determined 
by what we really can do with the system, and what is to be considered as the outcome.  

The effective one-dimensional structure of the globally symmetrized splits should not deceive 
anybody: equivalence does not mean absolute identity. The bunch of straight lines parallel to the main 
diagonal is not the same as a collection of points in a single line, and there is still the qualitative 
distinction of the shifts up and down from the main diagonal (the regions with a < b or a > b).  

Under the global symmetry (equivalence), for any split s, there is a unique equivalent “reduced” 
split R(s), such as either Neg R(s) = 0 or Pos R(s) = 0 (the positive and negative reductions). A linear 
order on the entire space of splits could be introduced, agreeing that any positive split is greater than 
any negative, and the positive and negative subspaces are independently ordered by the increase of 
Pos R(s) and the decrease of Neg R(s), respectively: 

   
Neg ( ) 0 & Pos ( ) 0
Pos ( ) Pos ( )
Neg ( ) Neg ( )

R s R s s s
R s R s s s
R s R s s s

′ ′= = ⇒ >
′ ′> ⇒ >
′ ′> ⇒ <

 

Consequently, the positive real axis can effectively be continued into the negative domain, which may 
look like transition from the two-dimensional picture to a single dimension. Graphically, the first 
quadrant is thus effectively expanded to the upper half-plane, with reduction being visualized as 
projection onto the horizontal line (–|+) : 

 

+ – 

z 

0 
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Still, these formally defined positive and negative branches yet remain separate and independent. Yes, 
each can be mapped onto the other, retaining the algebraic structure within the subspace; however, it is 
not quite evident how operations between the elements of different subspaces are to be introduced, to 
make the entire combined space uniform enough. One can easily observe that 

1 2 1 2

1 2 1 2 1 2

( ) ( ( ) ( ))
( ) ( ( ) ( )) ( ) ( )

R s s R R s R s
R s s R R s R s R s R s

+ = +
= =  

While multiplication of reductions keeps within the same straight line, adding together reductions of the 
opposite sign will certainly violate this simple structure, and one has to recourse to yet another reduction. 
That is, constructing the completely coupled field of real numbers implies rather strong assumptions 
that do not necessarily conform with the nature of applications. 

A too straightforward interpretation of the quasi-algebraic notation for splits (or complex 
numbers) may lead to confusion, as the qualitatively different objects get treated on the same grounds. 
It is important to remember that the character combination s = a+(–1)b is only a different graphic 
expression for s = 〈a, b〉; the characters a and b refer to real numbers, (–1) points at the position in the 
cortege, while the plus sign means nothing but considering the two parts together. To produce an 
algebraic expression proper, one would write something like  

,0 0,1 ,0 ,a b a b+ ⋅ =  

Similarly, in the right-hand side of the algebraically interpreted constraint s+(–1)s  = 0, the character 
0 does not stay for real zero, but rather for the cortege 〈0, 0〉, so that 

, 0,0 0k k = ≠  
The placement of the positive and negative axes on the same straight line does not change anything in 
that respect, while rather hiding and disguising the (additive) orthogonality. An analogous symmetry 
exists for rational numbers represented with the corteges of two integers: 

, 1, 1k k =  

since we can cancel the common multiplier in the numerator and the denominator of the ratio. Something 
like that can also be written for complex numbers brought to polar coordinates, 〈x, y〉 → 〈r, φ〉. In the 
absence of ramification, there are two conventional symmetries 

, , 2π

0, 0,0 0

r r kϕ ϕ

ε

= +

= ≠
 

for any integer k and real angle ε. However, these symmetries may be violated in certain cases, so that 
a significant phase shift can bring us onto a different branch, and approaching zero from different 
directions can result in different limit values. 

To summarize, in any theory, null (as an origin of a scale) and none (as negligible quantity) refer 
to the absence of a specific quality rather than to the absence of anything at all. In other words, there is 
no zero in general, there are many qualitatively different zeros. That is why, under certain assumptions, 
we can extend operations with the objects of the same kind and include the corresponding zero object 
in the elementary base. With all that, a rigorous mathematics would not treat zero as a number (or any 
other singular object), but rather as a mode of object production, something generic: a pattern, a scheme, 
a template, a type, the class of objects as the expression of the very possibility of their differentiation. 
Thus, the symmetry 〈k, k〉 = 〈0, 0〉, which can be interpreted as the equivalence of the point of the main 
diagonal, can also be turned inside out to describe the emergence of virtual pairs from null resembling 
the physical vacuum (which is far from being a sheer emptiness!). Pulling out a particle from the 
vacuum, we also create a hole of the same kind and size. Just like in physics, the zero level may often 
be movable; however, this symmetry does not influence the shape of the system in respect to the others. 

In the same way, infinity is not a number (albeit fancied as infinite cardinal or ordinal), but rather 
the very activity of distinguishing the opposites and translating one into the other. Zero is related to 
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infinity like the possibility of a product is related to actual production. A computer program is not the 
same as its execution; however, programming languages always account for hardware architecture, as 
well as hardware gets gradually adapted to language idioms. 

Note that the special role of the null has to do with the logic of theory. Thus, one can assert the 
truth of a statement (+1), or its falsity (–1); either of these values is logically definite, assuming the 
possibility of verification (or falsification). On the contrary, the zero value will rather mean that the 
problem has been ill-posed, as the categories of truth and falsity are no longer applicable to the case 
(though the same statement, in this context, may allow positive or negative evaluation in some other 
respect, for instance, being correct or incorrect). 

In the theory of splits, zero components stay for the absence of any operations on the positive or 
negative side, “debit” or “credit”. Considering some inevitable overhead, the cortege 〈0, 0〉 is not fully 
replaceable with a virtual exchange 〈k, k〉 (writing off the same amount as placed to the account). Such 
operations may be nontrivial when the units of the positive and negative components differ (say, like in 
currency exchange). However, in classical bookkeeping, movements like that are often implemented as 
a pair of reductions 〈a, 0〉 и 〈0, b〉 put on different accounts, instead of the split 〈a, b〉. The distinction of 
the two technologies resembles the difference between correlated quantum transitions and cascades; the 
interference of virtual processes may result in clearly observable (“macroscopic”) effects, but any 
financial speculation is organized in exactly the same manner! On a higher level of hierarchy, in 
consolidated reporting, the formal addition of movements recorded on different accounts is admissible: 

〈a, 0〉 + 〈0, b〉 = 〈a, b〉 
Yet another level involves a positive or negative reduction (or the zero balance). 

The profound mathematical (and philosophical) sense of splits is due to the fact that every object 
can be produced in many ways, which may be considered as equivalent in some respect, while revealing 
some important differences in another context. Here, additive real-number splits have been discussed 
for illustration: every number can be virtually represented by a difference of two other numbers. 
Multiplicative splits are structured in the same way, as any real number can be treated as a fraction; such 
splits become additive in a logarithmic scale. Similarly numbers can be split into sums or products 
(possible infinite). Just take the example of the decomposition of any integer into a product of primes, 
forming the core and purpose of the classical number theory. More examples: rotation in the opposite 
directions, the difference of outer and spinor dimensions, layered manifolds… Finally, the very 
complementarity of the object and the subject in the context of a definite activity is of the same split 
nature. Since every activity is to reproduce its product on a regular basis, splits can be understood as 
loops, cyclic paths. Obviously, many-component and many-level splits are as feasible. In the general 
case, any mathematical object implies a hierarchy of all the possible splits, the modes of definition. The 
expansion of this hierarchy into an admissible hierarchical structure is known as a mathematical theory. 
The direction of this development is always suggested by the practical considerations, coming from the 
current human needs. Mathematics (as any other science) serves people to assimilate some formal 
techniques, the typical schemes of activity, to free our reason from the routine operations for striving to 
the yet unexperienced. 

Dec 1983 

Oriented Curves 

In the early years, everybody must once have played with the Moebius strip. It’s a really amazing 
thing, while the mathematical theory behind it is not of an entirely formal kind. The Klein bottle is much 
simpler, as it is a regular 2-dimensional surface in a 4-dimentional space, quite smooth and posing no 
conceptual problems. A surface with an edge is already a challenge, since there is no way to define the 
edge of a manifold from within, in its own terms; we need to get out, to relate the inside to the some 
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outside, so that much will depend on choice of the embracing space and the mode of embedding. What 
holds for one case may not be applicable to another. That is why rigorous reasoning on singular spaces 
do not seem generally convincing, as there is always a feeling of an ad hoc theory stretched to the  
experiences to produce. Which, however, does not prevent science from being quite entertaining and 
instructive. 

Can we get rid of singularities and switch to a simpler construct? Traditionally, topologists 
employ gluing; but, since the Moebius strip has a single edge, it is not evident how it could be glued. 
With yet another standard trick, regular contraction, one can reduce the edge down to a (puncture) point; 
the result is still singular, though it might be considered as simpler, in a sense. 

Still, there is a different option. Note that the width of the Moebius strip does affect its topology. 
So, let us make the strip infinitely narrow thus making it into a closed curve. In this way, we get a (one-
dimensional) manifold without edges; the outer peculiarities of the strip will become the inner structure 
of the curve. The Moebius strip can be produced gluing the ends of a regular ribbon with a half-turn on 
one of the ends. Now, we have to clarify what such a warp mean for a (spatial) curve to close. 

Just visually, each point of any curve can be assigned with a (three-dimensional) orientation 
vector orthogonal to the direction along the curve; when we go from one point to another, the orientation 
vector will, in general, turn in its space. Gluing the ends of the curve with the same orientation, we get 
a regular space curve, which could be projected onto a plane so that the inner and outer regions of the 
projection would be clearly distinct, and the notions of inner and outer normal could be introduced. 
Gluing the ends with opposite orientation will produce the analog of the Moebius strip; in the projection 
on the plane, the outer normal will abruptly become inner after a full turn, and this behavior does not 
depend on the starting point. The apparent singularity is in no way related to the smoothness of the 
manifold: this is an artefact of the essentially nonlinear operation of projection and vector normalization. 

Formally, there is an orientation system in each point of a spatial curve, one of the dimensions 
corresponding to the direction along the curve, another follows the transversal displacement (for a strip, 
this means the local motion from one edge to another; their vector product gives the position of the 
(three-dimensional) normal. Such an orientation system will generate the inner space of each point, to 
be distinguished form the outer, attached spaces (for instance with the axes along the local velocity and 
the radial acceleration); in general, the outer characteristics of the curve (like curvature and torsion) are 
not related to inner properties (the position and structure of the orientation frame).  

Since the inner space does not depend on the outer, a displacement along the curve may, in 
addition to transversal orientation change, may also switch the very sense of the direction along the 
curve. In a three-dimensional embedding, this may produce an impression of singularity, cusp, 
retrograde motion. Still, embedding the same curve in four dimensions can preserve the uniform 
smoothness, so that the apparent irregularities could be explained by the choice of projection. There are 
many common-life examples. For instance, the mathematically smooth motion of a point pendulum 
shows up as a retrograde motion at the high ends of the trajectory; we also know that the motion of a 
distant airplane, when projected in the observation field, may produce weird curves that some people 
take for the maneuvers of a UFO. This is quite common in physics, when some nonlinear effects and 
singularities can be interpreted as the presence of hidden dimensions, up to the conjectures that the 
exustence of the light barrier (the impossibility of higher-than-light speeds) or the Schwarzschild 
singularity might hint to the higher dimensions of the physical space, where any movements are possible 
while the three-dimensional projection effectively crops the observable range.  

The difference of the outer and inner spaces might be compared to the distinction of physical 
fields from geometry. The orientation of the inner space axes does not depend on the transforms of the 
outer coordinates (including mirror reflection)$ this is a formal expression of the independence of a 
physical system from the observer. 

Displacement along the curve and the rotation of the normal in the plane orthogonal to the 
direction of motion can be characterized by two angle parameters: phase and orientation proper. If 
orientation gets modified by 2πk with the phase incremented by 2π, the curve corresponds to a regular 
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band; with orientation shifted by 2π(k + 1/2), this is an analog of the Moebius strip (with the half-integer 
number of twists). In the latter case, the curve gets effectively split into two layers (or sheets), 
consecutively spanned during each 4π turn. One could normalize this extended loop: 4π → 2π; this will 
make the Moebius curve into a regular curve. This obviously corresponds to the operation of slicing the 
Moebius strip in the longitudinal direction (which is known to produce a twisted regular strip). In 
general, the dynamics of orientation rotation may differ for the two halves of the extended loop; this 
difference does not matter in the absence of constraints, as it can be eliminated by the redefining of the 
“time” variable. 

In the general case, a phase shift by 2π will result in the orientation change by 2πq, where q is an 
arbitrary real number. For rational q, the curve will split into a finite number of layers; irrational factors 
will produce a kind of toroid. When the dynamics of orientation change depends on the phase, the 
spectrum (the density of curve turns around the layer surface) may exhibit quite nontrivial variations. 

The rotation of orientation along a closed curve could be illustrated by a physical model with an 
orthogonal to the motion direction dipole in every point of the curve, so that the polarization of the next 
point depends on the previous. A finite number of layers then would correspond to a standing wave, 
while the non-periodic orientation changes describe a wave running along the curve. Beside some exotic 
interpretations (like treating the magnetic monopole as a Moebius strip), there are practically useful 
applications as well.  

Oriented curves are hierarchical structures where each point unfolds into an inner space. The outer 
motion along the curve is naturally associated with a number of outer layers, with the curve (as a 
configuration space) becoming a stratified manifold. When it comes to the projection of such a construct 
onto a plane, it is not enough to merely establish correspondence between the point of the curve and the 
point of the plane: the inner and outer stratification too are to be reflected in the projection. This is 
possible in certain cases; for instance, the plane could be split in a number of sectors, each hosting a 
separate branch of the curve. More often, some features of the whole will be lost in projection. Similarly, 
higher-dimensional manifolds could be projected onto simpler spaces with a loss of important detail. 

The levels of hierarchy essentially depend on each other. Consider a trivial mathematical 
illustration: let an oriented curve be represented by a narrow plane ellipse whose axes rotate as we move 
from one of its point to another; if, after a full span, the ellipse will take the original position, we deal 
with a regular curve. 

An oriented curve is only apparently one-dimensional. In principle, all kinds of hierarchical 
structures could be unfolded in each point, while the transition from one point to another would mean 
folding one hierarchical structure and unfolding a different one (hierarchical conversion). In particular, 
the dimensionality of the inner space may change along the curve, with the same geometry of the 
embedding. 

Jan 1985 

Virtual Mathematics 

In quantum physics, we are used to refer to the inner states of some system (the points of the 
configuration space) which are never observable in any direct manner, so that the only way to guess 
about their presence is to interpret the outer behavior of the system the right way: the observable 
sequence is organized as if there were such inner states interacting in a definite way. Still, nothing 
prevents us from computing the same observable effects using an alternative technique that would not 
require any idea of the formerly introduced virtual states. This is a regular situation: in everyday life, 
we often produce the same from different components, using all kinds of tools; so, why not build a 
quantum system on a different basis? 

There are mathematical analogs of this virtuality, and most often they are related to the formal 
manipulations outside the region of their applicability. Fundamental mathematicians prefer to ignore 
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any objective foundations, pretending that mathematical constructs exist on themselves regardless of 
any possible applications. This is nothing but fantasy, or self-delusion. Every mathematical theory 
presumes a definite universe to support the abstract forms of a certain class. A rigorous derivation cannot 
mean anything but the elements of its object area, so that reasoning about any outer objects would be a 
logical fallacy. Nevertheless, in a purely formal manner, we can introduce objects that are impossible 
(virtual) in that particular theory, as a good occasion for passing to a different (extended) theory 
incorporating such abstractions along with the other objective features. 

For example, adding up two natural numbers, we obtain a natural number that is greater than any 
of the original items. That may be interpreted as the (virtual) presence of these items in the sum as its 
inner components. Fancy a theory knowing nothing beyond even numbers (which will therefore 
constitute its universe, the object area). In this theory, a representation of an even number with a sum of 
odd numbers is closely resembling the idea of a quantum amplitude as a superposition of some virtual 
basis states. Going yet farther, we can admit the existence of such entirely exotic entities as negative 
numbers that will diminish any original item in addition. However, as soon as we learn to produce things 
representing these fantastic creatures, one can raise them to the class of observables and consider all 
kinds of integers together. 

Similarly, a product of positive integers in a positive integer; taken together, all such numbers 
form the object base of one of the most important mathematical theories, where the operation of 
expanding an integer number in a product of integers plays a most fundamental part. Every natural 
number is then representable with a cloud of virtual products. There are “prime” numbers that reduce 
that virtual cloud to minimum; they provide a kind of a basis for the whole universe. For each number, 
its inner structure can be described by a sequence of the “level sets” Ln containing all the products with 
n components (from which we exclude the unity factor 1 since it, in fact, only specifies the scale, the 
units of measurement). The first level will obviously contain only the original number, while the lower 
level are absent for primes. Denoting the number of elements (the measure) for a set X as μ(X), we can 
introduce the index of a natural number N as 

( )
( )

!
nLN

n
µ

λ =∑  

For any prime number, this value obviously computes to 1; all the other numbers will produce values 
greater than unity. For instance, λ(15) = 1.5, and λ(12) = 3.5. The order of components in the product is 
important, but here, we do not distinguish equal factors (admitting that a different definition might be 
useful elsewhere). The factorial weighting has been introduced from real life considerations: the variants 
of less lengths are more practical, producing the same thing with minimum effort. The index could 
characterize the hierarchical complexity of a natural number; on the other hand, it is related to the 
practical “productivity”, since a number with a greater index can be obtained in many alternative ways. 
Given the expansion of a natural number into the product of primes, one cam easily calculate its index; 
however, the expression is no too trivial, which brings up observable effects similar to quantum 
interference, mixing the different inner representations (reaction channels).  

Just like in the above additive example, virtual negative numbers could be introduced as well, 
possibly treated as positive numbers multiplied by the “negative unit” factor (–1) similar to common 
dimensional component (+1) in all the positive integers. The “physically allowed” virtual trajectories 
will therefore be restricted to the product expansions with the even number of negative contributions; 
alternatively, one could say that negative dimensions (factors of –1) in the positive nature can only be 
born in pairs (like the poles of a magnet). A considerable mathematics can be developed about such 
multiplicative universe, with nontrivial generalizations of the index theory. 

The transition to the theory of all the integers will virtually retain this complexity; still, it may no 
longer be that significant, considering the highly symmetric nature of the general algebraic structure 
arising from the assumption that negative numbers can be “observable” on themselves (that is, they can 
be represented with some palpable things. 
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Similarly, in the theory of real numbers, no computation can be considered as “physical” unless 
it is going to produced a read answer. The introduction of the imaginary unit as 1i = −  is an obvious 
violation of the domain of the square root function; however, complex-valued expressions are quite 
admissible as virtual paths, provided we get something real in the end. Here, the analogy with quantum 
virtuality is much more pronounced: the same real number can be approached by many paths in the 
complex plane, so that every real number becomes a hierarchy of complex loops, or cycles; a similar 
introduction of the hierarchical complexity index allows to develop an extensive mathematical theory. 
In the presence of constraints, the topology of the object area becomes more complicated, and the 
existence of at least one cycle (albeit of the zero length) can no longer be guaranteed. The virtual 
character of the imaginary unit within the real-number theory is also a kind of constraint limiting the 
collection of the admissible paths. On the other hand, such a theory could consider some alternative 
topologies of the complex plane not employing the traditional operations of complex addition and 
multiplication. Still, if we are going to build a uniform theory of complex numbers, we will need to fix 
the appropriate rules thus choosing one of the possible (though irreducible to each other) structures. 

Yet another example: negative and complex sets in a theory, where each set is associated with the 
ways of its virtual production, construction from other sets. 

In the exactly the same manner, non-traditional logical theories could be developed, with the 
classical truth valuation obtained on the basis of non-classical reasoning. 

In general, any branch of mathematics admits both classical theories, as working exclusively with 
the objects definable within the theory, and various “quantum” extensions accounting for the different 
modes of virtualization. 

Dec 1982 
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